FREE BOOKS

Author's List




PREV.   NEXT  
|<   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118  
119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   >>   >|  
process of escaping. When the tooth of a cylinder escape wheel while performing its functions, strikes the cylinder shell, it rests dead on the outer or inner surface of the half shell until the action of the balance spring has brought the lip of the cylinder so that the impulse face of the tooth commences to impart motion or power to the balance. [Illustration: Fig. 122] [Illustration: Fig. 123] [Illustration: Fig. 124] [Illustration: Fig. 125] [Illustration: Fig. 126] [Illustration: Fig. 127] [Illustration: Fig. 128] Most writers on horological matters term this act the "lift," which name was no doubt acquired when escapements were chiefly confined to pendulum clocks. Very little thought on the matter will show any person who inspects Fig. 126 that if the tooth _C_ is released or escapes from the inside of the half shell of the cylinder _A_, said cylinder must turn or revolve a little in the direction of the arrow _j_, and also that the next succeeding tooth of the escape wheel will engage the cylinder on the outside of the half shell, falling on the dead or neutral portion of said cylinder, to rest until the hairspring causes the cylinder to turn in the opposite direction and permitting the tooth now resting on the outside of the cylinder to assume the position shown on the drawing. The first problem in our consideration of the theoretical action of the cylinder escapement, is to arrange the parts we have described so as to have these two movements of the escape wheel of like angular values. To explain what we mean by this, we must premise by saying, that as our escape wheel has fifteen teeth and we make each tooth give two impulses in alternate directions we must arrange to have these half-tooth movements exactly alike, or, as stated above, of equal angular values; and also each impulse must convey the same power or force to the balance. All escape wheels of fifteen teeth acting by half impulses must impel the balance during twelve degrees (minus the drop) of escape-wheel action; or, in other words, when a tooth passes out of the cylinder from the position shown at Fig. 126, the form of the impulse face of the tooth and the shape of the exit lip of the cylinder must be such during twelve degrees (less the drop) of the angular motion of the escape wheel. The entire power of such an escape wheel is devoted to giving impulse to the balance. The extent of angular motion of the balance during s
PREV.   NEXT  
|<   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118  
119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   >>   >|  



Top keywords:

cylinder

 
escape
 

Illustration

 
balance
 

angular

 

impulse

 

motion

 

action

 

direction

 

twelve


degrees

 

impulses

 
movements
 

arrange

 

values

 

position

 
fifteen
 

strikes

 
premise
 

functions


stated
 

directions

 

alternate

 

spring

 

brought

 

surface

 

explain

 

process

 

extent

 

giving


devoted

 

entire

 

passes

 
wheels
 
acting
 

convey

 

performing

 
escaping
 

escapement

 

horological


released

 

inspects

 

escapes

 

writers

 

revolve

 
inside
 

person

 
confined
 

pendulum

 

chiefly