FREE BOOKS

Author's List




PREV.   NEXT  
|<   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154  
155   156   157   158   159   160   >>  
regulation. The verge _V_ was set up horizontally and the pendulum _B_, suspended freely from a flexible cord, received the impulses through the intermediation of the forked arm _F_, which formed a part of the verge. At first this forked arm was not thought of, for the pendulum itself formed a part of the verge. A far-reaching step had been taken, but it soon became apparent that perfection was still a long way off. The crown-wheel escapement forcibly incited the pendulum to wider oscillations; these oscillations not being as Galileo had believed, of unvaried durations, but they varied sensibly with the intensity of the motive power. THE ATTAINMENT OF ISOCHRONISM BY HUYGENS. Huygens rendered his pendulum _isochronous_; that is, compelled it to make its oscillations of equal duration, whatever might be the arc described, by suspending the pendulum between two metallic curves _c c'_, each one formed by an arc of a cycloid and against which the suspending cord must lie upon each forward or backward oscillation. We show this device in Fig. 151. In great oscillations, and by that we mean oscillations under a greater impulse, the pendulum would thus be shortened and the shortening would correct the time of the oscillation. However, the application of an exact cycloidal arc was a matter of no little difficulty, if not an impossibility in practice, and practical men began to grope about in search of an escapement which would permit the use of shorter arcs of oscillation. At London the horologist, G. Clement, solved the problem in 1675 with his rack escapement and recoil anchor. In the interval other means were invented, especially the addition of a second pendulum to correct the irregularities of the first. Such an escapement is pictured in Fig. 152. The verge is again vertical and carries near its upper end two arms _D D_, which are each connected by a cord with a pendulum. The two pendulums oscillate constantly in the inverse sense the one to the other. [Illustration: Fig. 154] [Illustration: Fig. 155] ANOTHER TWO-PENDULUM ESCAPEMENT. We show another escapement with two pendulums in Fig. 153. These are fixed directly upon two axes, each one carrying a pallet _P P'_ and a segment of a toothed wheel _D D_, which produces the effect of solidarity between them. The two pendulums oscillate inversely one to the other, and one after the other receives an impulse. This escapement was constructed by Jean Baptiste Dut
PREV.   NEXT  
|<   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154  
155   156   157   158   159   160   >>  



Top keywords:

pendulum

 
escapement
 

oscillations

 
formed
 

oscillation

 

pendulums

 

oscillate

 

Illustration

 

suspending

 

forked


impulse

 

correct

 
recoil
 

horologist

 

London

 

Clement

 
solved
 

problem

 
difficulty
 

impossibility


cycloidal
 

matter

 

practice

 

practical

 

permit

 

shorter

 

search

 

anchor

 

directly

 

carrying


pallet

 

segment

 

PENDULUM

 
ESCAPEMENT
 
toothed
 

produces

 

constructed

 
Baptiste
 

receives

 

effect


solidarity

 

inversely

 

ANOTHER

 

irregularities

 

pictured

 
addition
 

invented

 
vertical
 

carries

 

inverse