FREE BOOKS

Author's List




PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>   >|  
towards the great one, is placed in the axis of the tube and forms an image which is viewed through an aperture in the middle of the great mirror. A similar plan is adopted in Cassegrain's Telescope, a small convex mirror replacing the concave one. In Newton's Telescope a small inclined-plane reflector is used, which sends the pencil of light off at right-angles to the axis of the tube. In Herschel's Telescope the great mirror is inclined so that the image is formed at a slight distance from the axis of the telescope. In the two first cases the object is viewed in the usual or direct way, the image being erect in Gregory's and inverted in Cassegrain's. In the third the observer looks through the side of the telescope, seeing an inverted image of the object. In the last the observer sees the object inverted, but not altered as respects right and left. The last-mentioned method of viewing objects is the only one in which the observer's back is turned towards the object, yet this method is called the _front view_--apparently _quasi lucus a non lucendo_. [Illustration: _Fig. 3._] It appears, then, that in all astronomical Telescopes, reflecting or refracting, a _real image_ of an object is submitted to microscopical examination. Of this fact the possessor of a telescope may easily assure himself; for if the eye-glass be removed, and a small screen be placed at the focus of the object-glass, there will appear upon the screen a small picture of any object towards which the tube is turned. But the image may be viewed in another way which requires to be noticed. If the eye, placed at a distance of five or six inches from the image, be directed down the tube, the image will be seen as before; in fact, just as a single convex lens of short focus is the simplest microscope, so a simple convex lens of long focus is the simplest telescope.[1] But a singular circumstance will immediately attract the observer's notice. A real picture, or the image formed on the screen as in the former case, can be viewed at varying distances; but when we view the image directly, it will be found that for distinct vision the eye must be placed almost exactly at a fixed distance from the image. This peculiarity is more important than it might be thought at first sight. In fact, it is essential that the observer who would rightly apply the powers of his telescope, or fairly test its performance, should understand in what respect an image formed by
PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>   >|  



Top keywords:

object

 

observer

 
telescope
 

viewed

 

formed

 
inverted
 

convex

 

mirror

 

screen

 

distance


Telescope
 

turned

 
simplest
 

method

 

picture

 

inclined

 

Cassegrain

 
microscope
 

attract

 

immediately


singular

 
simple
 

circumstance

 

single

 

directed

 
requires
 

noticed

 
inches
 
rightly
 

powers


essential
 

thought

 

fairly

 

respect

 

understand

 

performance

 
important
 

distances

 

varying

 

directly


peculiarity

 

distinct

 

vision

 
notice
 
direct
 

slight

 

Gregory

 

altered

 

respects

 

Herschel