FREE BOOKS

Author's List




PREV.   NEXT  
|<   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44  
45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   >>   >|  
od telescope, mounted on a steady stand, working easily and conveniently, will not only enable the observer to pass his time much more pleasantly, but will absolutely exhibit more difficult objects than a finer instrument on a rickety, ill-arranged stand. A good observing-chair is also a matter of some importance, the least constraint or awkwardness of position detracting considerably from the power of distinct vision. Such, at least, is my own experience. But the mere examination of the glasses, tube, mounting, &c., is only the first step in the series of tests which should be applied to a telescope, since the excellence of the instrument depends, not on its size, the beauty of its mounting, or any extraneous circumstances, but on its performance. The observer should first determine whether the chromatic aberration is corrected. To ascertain this the telescope should be directed to the moon, or (better) to Jupiter, and accurately focussed for distinct vision. If, then, on moving the eye-piece towards the object-glass, a ring of purple appears round the margin of the object, and on moving the eye-glass in the contrary direction a ring of green, the chromatic aberration is corrected, since these are the colours of the secondary spectrum. To determine whether the spherical aberration is corrected, the telescope should be directed towards a star of the third or fourth magnitude, and focussed for distinct vision. A cap with an aperture of about one-half its diameter should then be placed over the object-glass. If no new adjustment is required for distinct vision, the spherical aberration is corrected, since the mean focal length and the focal length of the central rays are equal. If, when the cap is on, the eye-piece has to be pulled out for distinct vision, the spherical aberration has not been fully corrected; if the eye-piece has to be pushed in, the aberration has been over-corrected. As a further test, we may cut off the central rays, by means of a circular card covering the middle of the object-glass, and compare the focal length for distinct vision with the focal length when the cap is applied. The extent of the spherical aberration may be thus determined; but if the first experiment gives a satisfactory result, no other is required. A star of the first magnitude should next be brought into the field of view. If an irradiation from one side is perceived, part of the object-glass has not the same refractive p
PREV.   NEXT  
|<   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44  
45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   >>   >|  



Top keywords:

aberration

 

distinct

 
vision
 

corrected

 

object

 
spherical
 

length

 

telescope

 

determine

 

mounting


central
 

magnitude

 
observer
 

applied

 

moving

 

required

 

directed

 
focussed
 

instrument

 

chromatic


aperture

 
spectrum
 

secondary

 

colours

 

fourth

 
diameter
 

brought

 
result
 
satisfactory
 

determined


experiment
 

refractive

 

perceived

 

irradiation

 

extent

 

pushed

 
pulled
 

covering

 

middle

 

compare


circular

 

adjustment

 

ascertain

 
observing
 
arranged
 

rickety

 

matter

 

detracting

 

considerably

 

position