FREE BOOKS

Author's List




PREV.   NEXT  
|<   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115  
116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   >>   >|  
pense with the most of the teeth, retaining only those near the extremities of the major axes, which are necessary in order to assist and control the motion of the link at and near the dead-points. The arc of the pitch-curves through which the teeth must extend will vary with their eccentricity; but in many cases it would not be greater than that which in the approximation may be struck about one centre; so that, in fact, it would not be necessary to go through the process of rectifying and subdividing the quarter of the ellipse at all, as in this case it can make no possible difference whether the spacing adopted for the teeth to be cut would "come out even" or not, if carried around the curve. By this expedient, then, we may save not only the trouble of drawing, but a great deal of labor in making, the teeth round the whole ellipse. We might even omit the intermediate portions of the pitch ellipses themselves; but as they move in rolling contact their retention can do no harm, and in one part of the movement will be beneficial, as they will do part of the work; for if, when turning, as shown by the arrows, we consider the wheel whose axis is D as the driver, it will be noted that its radius of contact, C P, is on the increase; and so long as this is the case the other wheel will be compelled to move by contact of the pitch lines, although the link be omitted. And even if teeth be cut all round the wheels, this link is a comparatively inexpensive and a useful addition to the combination, especially if the eccentricity be considerable. Of course the wheels shown in Figure 255 might also have been made alike, by placing a tooth at one end of the major axis and a space at the other, as above suggested. In regard to the variation in the velocity ratio, it will be seen, by reference to Figure 256, that if D be the axis of the driver, the follower will in the position there shown move faster, the ratio of the angular velocities being P x D/P x B; if the driver turn uniformly, the velocity of the follower will diminish, until at the end of half a revolution, the velocity ratio will be P x B/P x D; in the other half of the revolution these changes will occur in a reverse order. But P D = L B; if then the centres B D are given in position, we know L P, the major axis; and in order to produce any assumed maximum or minimum velocity ratio, we have only to divide L P into segments whose ratio is equal to that assumed value, which wil
PREV.   NEXT  
|<   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115  
116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   >>   >|  



Top keywords:
velocity
 

contact

 

driver

 
follower
 

position

 

Figure

 

wheels

 

revolution

 
eccentricity
 
ellipse

assumed

 

combination

 

maximum

 

compelled

 

considerable

 

produce

 

addition

 

omitted

 

divide

 
inexpensive

comparatively
 

minimum

 
segments
 

reference

 

diminish

 

uniformly

 

velocities

 
angular
 
increase
 

faster


variation
 

placing

 

centres

 

reverse

 

regard

 

suggested

 

portions

 

centre

 

struck

 

approximation


greater

 

process

 

difference

 
quarter
 

rectifying

 

subdividing

 

extremities

 

assist

 

retaining

 

control