FREE BOOKS

Author's List




PREV.   NEXT  
|<   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117  
118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   >>   >|  
qual distance from their axis of motion, which is the axis of the shaft S. [Illustration: Fig. 259.] In Figure 259 we have a case in which the end of a lever acts directly upon a shoe. Now let it be required to find how much a given motion of the lever will cause the shoe to slide along the line _x_; the point H is here found precisely as before, and from it as a centre, the dotted circle equal in diameter to the small circle at E is drawn from the perimeter of the dotted circle, a dotted line is carried up and another is carried up from the face of the shoe. The distance K between these dotted lines is the amount of motion of the shoe. In Figure 260 we have the same conditions as in Figure 259, but the short arm has a roller acting against a larger roller R. The point H is found as before. The amount of motion of R is the distance of K from J; hence we may transfer this distance from the centre of R, producing the point P, from which the new position may be marked by a dotted circle as shown. [Illustration: Fig. 260.] In Figure 261 a link is introduced in place of the roller, and it is required to find the amount of motion of rod R. The point H is found as before, and then the length from centre to centre of link L is found, and with this radius and from H as a centre the arc P is drawn, and where P intersects the centre line J of R is the new position for the eye or centre Q of R. [Illustration: Fig. 261.] In Figure 262 we have a case of a similar lever actuating a plunger in a vertical line, it being required to find how much a given amount of motion of the long arm will actuate the plunger. Suppose the long arm to move to A, then draw the lines B C and the circle D. Take the radius or distance F, G, and from E mark on D the arc H. Mark the centre line J of the rod. Now take the length from E to I of the link, and from H as a centre mark arc K, and at the intersection of K with J is where the eye I will be when the long arm has moved to A. [Illustration: Fig. 262.] In Figure 263 are two levers upon their axles or shafts S and S'; arm A is connected by a link to arm B, and arm C is connected direct to a rod R. It is required to find the position of centre G of the rod eye when D is in position E, and when it is also in position F. Now the points E and F are, of course, on an arc struck from the axis S, and it is obvious that in whatever position the centre H may be it will be somewhere on the arc
PREV.   NEXT  
|<   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117  
118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   >>   >|  



Top keywords:

centre

 
motion
 

Figure

 
position
 

circle

 

distance

 

dotted

 

amount


Illustration

 

required

 

roller

 

radius

 
length
 

carried

 

connected

 

plunger


struck
 

vertical

 
obvious
 

actuate

 
Suppose
 

direct

 

intersection

 

levers


shafts

 

points

 

perimeter

 

diameter

 

directly

 

precisely

 

conditions

 

introduced


marked

 
intersects
 
similar
 

producing

 

transfer

 
acting
 

larger

 

actuating