FREE BOOKS

Author's List




PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  
phrase a tutor can use; but even these words will convey no meaning until they have been associated with the pupil's perceptions. When he has once perceived the combination of the numbers with real objects, it will then be easy to teach him that the words _are called_, _are_, and _make_, in the foregoing proposition, are synonymous terms. We have chosen the first simple instance we could recollect, to show how difficult the words we generally use in teaching arithmetic, must be to our young pupils. It would be an unprofitable task to enumerate all the puzzling technical terms which, in their earliest lessons, children are obliged to hear, without being able to understand. It is not from want of capacity that so many children are deficient in arithmetical skill; and it is absurd to say, "such a child has no genius for arithmetic. Such a child cannot be made to comprehend any thing about numbers." These assertions prove nothing, but that the persons who make them, are ignorant of the art of teaching. A child's seeming stupidity in learning arithmetic, may, perhaps, be a proof of intelligence and good sense. It is easy to make a boy, who does not reason, repeat by rote any technical rules which a common writing-master, with magisterial solemnity, may lay down for him; but a child who reasons, will not be thus easily managed; he stops, frowns, hesitates, questions his master, is wretched and refractory, until he can discover why he is to proceed in such and such a manner; he is not content with seeing his preceptor make figures and lines upon a slate, and perform wondrous operations with the self-complacent dexterity of a conjurer. A sensible boy is not satisfied with merely seeing the total of a given sum, or the answer to a given question, _come out right_; he insists upon knowing why it is right. He is not content to be led to the treasures of science blindfold; he would tear the bandage from his eyes, that he might know the way to them again. That many children, who have been thought to be slow in learning arithmetic, have, after their escape from the hands of pedagogues, become remarkable for their quickness, is a fact sufficiently proved by experience. We shall only mention one instance, which we happened to meet with whilst we were writing this chapter. John Ludwig, a Saxon peasant, was dismissed from school when he was a child, after four years ineffectual struggle to learn the common rules of arithmetic. He h
PREV.   NEXT  
|<   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52  
53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   >>   >|  



Top keywords:

arithmetic

 

children

 
technical
 

teaching

 

learning

 

content

 

master

 
instance
 

writing

 

common


numbers

 

blindfold

 

answer

 
science
 
satisfied
 

insists

 

treasures

 
question
 

knowing

 

complacent


proceed
 

manner

 
convey
 

preceptor

 

meaning

 

discover

 

questions

 

wretched

 

refractory

 
figures

dexterity

 

conjurer

 

operations

 
wondrous
 

perform

 
chapter
 
Ludwig
 

happened

 

whilst

 
peasant

phrase

 
ineffectual
 
struggle
 

dismissed

 

school

 

mention

 

thought

 
hesitates
 
escape
 

sufficiently