FREE BOOKS

Author's List




PREV.   NEXT  
|<   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347  
348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370   371   372   >>   >|  
em off into vapour? Had the Rowton siderite, for instance, struck our atmosphere with a velocity of twenty miles a second, it seems unquestionable that it would have been dissipated by heat, though, no doubt, the particles would ultimately coalesce so as to descend slowly to the earth in microscopic beads of iron. How has the meteorite escaped this fate? It must be remembered that our earth is also moving with a velocity of about eighteen miles per second, and that the _relative_ velocity with which the meteorite plunges into the air is that which will determine the degree to which friction is operating. If the meteorite come into direct collision with the earth, the velocity of the collision will be extremely great; but it may happen that though the actual velocities of the two bodies are both enormous, yet the relative velocity may be comparatively small. This is, at all events, one conceivable explanation of the arrival of a meteorite on the surface of the earth. We have shown in the earlier parts of the chapter that the well-known star showers are intimately connected with comets. In fact, each star shower revolves in the path pursued by a comet, and the shooting star particles have, in all probability, been themselves derived from the comet. Showers of shooting stars have, therefore, an intimate connection with comets, but it is doubtful whether meteorites have any connection with comets. It has already been remarked that meteorites have never been known to fall in the great star showers. No particle of a meteorite is known to have dropped from the countless host of the Leonids or of the Perseids; as far as we know, the Lyrids never dropped a meteorite, nor did the Quadrantids, the Geminids, or the many other showers with which every astronomer is familiar. There is no reason to connect meteorites with these showers, and it is, therefore, doubtful whether we should connect meteorites with comets. With reference to the origin of meteorites it is difficult to speak with any great degree of confidence. Every theory of meteorites presents difficulties, so it seems that the only course open to us is to choose that view of their origin which seems least improbable. It appears to me that this condition is fulfilled in the theory entertained by the Austrian mineralogist, Tschermak. He has made a study of the meteorites in the rich collection at Vienna, and he has come to the conclusion that the "meteorites have had a vo
PREV.   NEXT  
|<   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347  
348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370   371   372   >>   >|  



Top keywords:

meteorites

 

meteorite

 

velocity

 
comets
 

showers

 

shooting

 

collision

 

connect

 

theory

 
degree

relative

 
origin
 
dropped
 

particles

 
connection
 

doubtful

 

Geminids

 

Quadrantids

 
particle
 
remarked

intimate

 
countless
 

Perseids

 

Leonids

 
Lyrids
 

confidence

 

entertained

 
Austrian
 

mineralogist

 

Tschermak


fulfilled

 

condition

 

improbable

 

appears

 

conclusion

 

Vienna

 

collection

 

reference

 

difficult

 

familiar


reason

 

Showers

 
choose
 

presents

 

difficulties

 

astronomer

 

surface

 
remembered
 

escaped

 

microscopic