FREE BOOKS

Author's List




PREV.   NEXT  
|<   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182  
183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   >>   >|  
ed magnet wire, the ends of which may be passed through small holes in the wooden ends. If a drill small enough is not available, the holes may be made with a hot knitting needle or a piece of wire heated to redness. After the primary coil is wound it should be thoroughly insulated before winding the secondary. This may be done by wrapping with 4 or 5 thicknesses of paper. The secondary coil should be wound with single covered wire, preferably silk-covered, although cotton will do. The more turns there are on the secondary the higher the voltage will be, so the wire used must be fine. Number 32 to 36 will give good results, the latter giving more voltage but less amperage. Each layer of the secondary winding should be insulated from the others by a piece of thin paraffined paper wrapped over each layer as it is finished. It is well not to wind to the extreme ends of the paper insulations, but to leave a space of about 1/8-in. at each end of the winding to prevent the wires of one layer slipping over the ends of the paraffin [Illustration: Induction Coil] paper and coming in contact with the layer beneath, thus causing a short circuit. The secondary winding should have at least a dozen layers and should be carefully wound to prevent short circuiting. In order to reduce the strength of the current a piece of brass tubing, F, is pushed into the space, C, surrounding the core, or if no brass tubing of the required size is on hand, roll a paper tube, cover with 4 or 5 thicknesses of tinfoil and then wrap with more paper, using glue to hold the tinfoil in place and to keep the tube from unwinding. When the tube is pushed all the way in, the current produced [Illustration: Induction Coil] will be almost unnoticeable, but when it is withdrawn the current will be so strong that a person cannot let go the handles until the coil is shut off. After the secondary coil is wound it should be covered with stiff paper, and the whole coil, including the wood ends, should then be enameled black. It is then ready to be mounted on a wooden base as shown in Fig. 2. The secondary terminals are connected to the binding-posts, AA, which may be fastened on the base if desired. One wire from the primary is connected with the binding-post, B, and the other is connected with the armature, D, which may be taken from an old electric bell. The contact screw, E, also from an electric bell, is connected to the binding-post, C. The conta
PREV.   NEXT  
|<   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182  
183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   >>   >|  



Top keywords:

secondary

 

connected

 
winding
 

covered

 

binding

 
current
 

voltage

 

electric

 

tubing

 

pushed


contact

 

tinfoil

 
prevent
 

Illustration

 
Induction
 
wooden
 
thicknesses
 

insulated

 

primary

 

required


unnoticeable

 

person

 
withdrawn
 

strong

 

produced

 

unwinding

 
armature
 

desired

 

passed

 

magnet


fastened

 

including

 

surrounding

 

enameled

 

terminals

 

mounted

 

handles

 
paraffined
 

amperage

 

single


wrapped

 

wrapping

 
extreme
 
insulations
 

finished

 

giving

 

higher

 
preferably
 

cotton

 

results