FREE BOOKS

Author's List




PREV.   NEXT  
|<   449   450   451   452   453   454   455   456   457   458   459   460   461   462   463   464   465   466   467   468   469   470   471   472   473  
474   475   476   477   478   479   480   481   482   483   484   485   486   487   488   489   490   491   492   493   494   495   496   497   498   >>   >|  
ding, and the power may be transmitted below, or to the top of a stand specially erected for the purpose. It is a good plan to visit some of the second-hand machinery dealers and get four gears, a pulley and a shaft. Gears about 5 in. in diameter and beveled will be required. Adjust the first pair of the beveled gears as at F and G. If the wheel shaft is metal, the gear may be set-screwed to the shaft, or keyed to it. If the shaft is hardwood, it will be necessary to arrange for a special connection. The shaft may be wrapped with sheet metal and this metal fastened on with screws. Then the gear may be attached by passing a pin through the set-screw hole and through the shaft. The upright shaft like the wheel shaft is best when of metal. This shaft is shown extending from the gear, G, to a point below. The object is to have the shaft reach to the point where the power is received for the service below. The shaft is shown cut off at K. Passing to Fig. 3 the shaft is again taken up at L. It now passes through the arrangement shown, which device is rigged up to hold the shaft and delivery wheel P in place. This shaft should also be metal. Secure the beveled gears M and N as shown. These transmit the power from the upright shaft to the lower horizontal shaft. Provide the wheel or pulley, P, with the necessary belt to carry the power from this shaft to the point of use. The tail board of the windmill is illustrated in Fig. 4. A good way to make this board is to use a section of thin lumber and attach it to the rear upright, E of Fig. 2. This may be done by boring a hole in the upright and inserting the shaft of the tail-piece. In Fig. 4 is also shown the process of fastening a gear, R, to the shaft. The set screws enter the hub from the two sides and the points are pressed upon [Illustration: Fig. 6] the shaft, thus holding the gear firmly in place. The platform for the entire wheel device is shown in Fig. 5. The X-piece S is bored through in the middle and the upright shaft passes through. The tin run-way or ring is marked T, and the X-piece very readily revolves in this ring, whenever the wind alters and causes the wheel's position to change. The ring and ring base are secured to the platform, U. The latter is made of boards nailed to the timbers of the staging for supporting the mill. This staging is shown in Fig. 6, in a sectional view. The ring with its X-piece is marked V, the X-piece is marked W, and the base
PREV.   NEXT  
|<   449   450   451   452   453   454   455   456   457   458   459   460   461   462   463   464   465   466   467   468   469   470   471   472   473  
474   475   476   477   478   479   480   481   482   483   484   485   486   487   488   489   490   491   492   493   494   495   496   497   498   >>   >|  



Top keywords:

upright

 

marked

 
beveled
 

staging

 
screws
 

platform

 

device

 

pulley

 

passes

 

points


section

 
lumber
 

windmill

 

illustrated

 
attach
 
process
 
inserting
 

boring

 

fastening

 
boards

secured
 

position

 

change

 

nailed

 
timbers
 
sectional
 

supporting

 

alters

 

firmly

 

entire


holding
 

Illustration

 

middle

 

revolves

 

readily

 

pressed

 

screwed

 

hardwood

 

required

 
Adjust

arrange

 
special
 
attached
 

fastened

 

connection

 
wrapped
 

diameter

 
erected
 

purpose

 
specially