FREE BOOKS

Author's List




PREV.   NEXT  
|<   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229  
230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   >>   >|  
value of M, which is not necessarily a whole number, should be determined for each test, though in all probability such a value is a constant for any individual calorimeter which is properly operated. The correction for radiation as found on page 188 is in all instances to be added to the range of temperature between the firing point and the point chosen from which the final radiation is calculated. This corrected range multiplied by the water equivalent of the calorimeter gives the heat of combustion in calories of the coal burned in the calorimeter together with that evolved by the burning of the fuse wire. The heat evolved by the burning of the fuse wire is found from the determination of the actual weight of wire burned and the heat of combustion of one milligram of the wire (1.7 calories), _i. e._, multiply the weight of wire used by 1.7, the result being in gram calories or the heat required to raise one gram of water one degree centigrade. Other small corrections to be made are those for the formation of nitric acid and for the combustion of sulphur to sulphuric acid instead of sulphur dioxide, due to the more complete combustion in the presence of oxygen than would be possible in the atmosphere. To make these corrections the bomb of the calorimeter is carefully washed out with water after each test and the amount of acid determined from titrating this water with a standard solution of ammonia or of caustic soda, all of the acid being assumed to be nitric acid. Each cubic centimeter of the ammonia titrating solution used is equivalent to a correction of 2.65 calories. As part of acidity is due to the formation of sulphuric acid, a further correction is necessary. In burning sulphuric acid the heat evolved per gram of sulphur is 2230 calories in excess of the heat which would be evolved if the sulphur burned to sulphur dioxide, or 22.3 calories for each per cent of sulphur in the coal. One cubic centimeter of the ammonia solution is equivalent to 0.00286 grams of sulphur as sulphuric acid, or to 0.286 x 22.3 = 6.38 calories. It is evident therefore that after multiplying the number of cubic centimeters used in titrating by the heat factor for nitric acid (2.65) a further correction of 6.38 - 2.65 = 3.73 is necessary for each cubic centimeter used in titrating sulphuric instead of nitric acid. This correction will be 3.73/0.297 = 13 units for each 0.01 gram of sulphur in the coal. The total correction t
PREV.   NEXT  
|<   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229  
230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   >>   >|  



Top keywords:
sulphur
 

calories

 

correction

 

sulphuric

 

combustion

 

titrating

 

nitric

 

evolved

 

calorimeter

 

centimeter


equivalent
 

burning

 
solution
 

ammonia

 

burned

 

weight

 

dioxide

 

number

 

formation

 

determined


corrections

 
radiation
 

caustic

 

assumed

 
amount
 

washed

 

standard

 
evident
 

excess

 

multiplying


factor

 

carefully

 

centimeters

 

acidity

 

individual

 

multiplied

 

corrected

 

constant

 

determination

 
actual

probability

 
calculated
 
instances
 

operated

 

properly

 

chosen

 

firing

 

temperature

 

milligram

 

complete