FREE BOOKS

Author's List




PREV.   NEXT  
|<   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40  
41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   >>   >|  
is a mechanical impulse, propagated through an elastic medium, and, like a wave in water, tends to the side of least resistance. Within a refracting body the ether is rarefied, not only by the proximity of the atoms of the body (or its density), but also by the motions of those atoms; so that if two _simple_ gases of different specific gravity be made equal in density by compression, their refraction will be approximately as their specific heats. In the case of solids and liquids, or even compound gases, there is a continual absorption of motion to produce the cohesion of composition and aggregation. And the specific heats of compound gases will be found greater than those of simple gases, in proportion to the loss of volume by combination, _ceteris paribus_. If impenetrability be a law of matter, the more a portion of atomic matter is condensed, the less ether will be found in the same space. The same is also true when the natural density or specific gravity of a gas is greater than that of another. And the lighter the gas, the more will this circumstance vitiate the experiments to determine its specific heat. There is, therefore, this great source of fallacy in such experiments, viz.: that the ether permeates all fluids and solids, and that _its specific heat probably far exceeds that of all other matter_. This is a fundamental position of the theory, in support of which we will introduce a fact announced by M. V. Regnault, which was published in the Comptes Rendus of the French Academy for April, 1853. He says: "In the course of my researches I have encountered, indeed, at every step, anomalies which appeared to me inexplicable, in accordance with the theories formally recognized. For the sake of illustration I will quote one instance: 1st, a mass of gas, under a pressure of ten atmospheres, is contained in a space which is suddenly doubled; the pressure falls to five atmospheres. 2d. Two reservoirs of equal capacity are placed in a calorimeter; the one is filled with a gas, under a pressure of ten atmospheres; the second is perfectly empty. In these two experiments, the initial and final conditions of the gas are the same; but this identity of condition is accompanied by calorific results which are very different; for while in the former experiment there is a reduction of temperature, in the second the calorimeter does not indicate the slightest alteration of temperature." This experiment tends to confirm the theory.
PREV.   NEXT  
|<   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40  
41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   >>   >|  



Top keywords:

specific

 

pressure

 

atmospheres

 

density

 

matter

 
experiments
 

calorimeter

 

compound

 

solids

 

theory


greater
 

temperature

 

experiment

 

gravity

 

simple

 

researches

 

encountered

 
inexplicable
 

appeared

 

Regnault


anomalies

 

reduction

 

Academy

 

slightest

 

alteration

 

French

 
Rendus
 
confirm
 

Comptes

 
published

recognized

 

doubled

 

suddenly

 
contained
 

filled

 

capacity

 

initial

 

reservoirs

 
conditions
 

identity


perfectly

 

results

 

theories

 

formally

 

illustration

 

calorific

 
instance
 
condition
 

accompanied

 

accordance