FREE BOOKS

Author's List




PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  
e are too apt to confound the precision of the laws of nature, with the perfection of human theories. Man observes the phenomena of the heavens, and derives his means of predicting what will be, from what has been. Hence the motions of the heavenly bodies are known to within a trifling amount of the truth; but it does not follow that the true explanation is always given by theory. If this were so, the mass of the moon (for instance) ought to be the same, whether deduced from the principle of gravitation or from some other source. This is not so. Newton found it 1/40 of that of the earth. La Place, from a profound theoretical discussion of the tides, gave it as 1/58.6, while from other sources he found a necessity of diminishing it still more, to 1/68, and finally as low as 1/75. Bailly, Herschel, and others, from the nutation of the earth's axis, only found 1/80, and the Baron Lindenau deduced the mass from the same phenomenon 1/88. In a very recent work by Mr. Hind, he uses this last value in certain computations, and remarks, that we shall not be very far wrong in considering it as 1/80 of the mass of the earth. This shows the uncertainty of the matter in 1852. If astronomy is so perfect as to determine the parallax of a fixed star, which is almost always less than one second, why is it that the mass of the moon is not more nearly approximated? Every two weeks the sun's longitude is affected by the position of the moon, alternately increasing and diminishing it, by a quantity depending solely upon the relative mass of the earth and moon, and is a gross quantity compared to the parallax of a star. So, also, the horizontal parallax--the most palpable of all methods--taken by different observers at Berlin, and the Cape of Good Hope, (a very respectable base line, one would suppose,) makes the mass of the moon greater than its value derived from nutation; the first giving about 1/70, the last about 1/74.2. Does not this declare that it is unsafe to depend too absolutely on the strict wording of the Newtonian law of gravitation. Happily our theory furnishes us with the correct value of the moon's mass, written legibly on the surface of the earth; and it comes out nearly what these two phenomena always gave it, viz.: 1/72.3 of that of the earth. In another place we shall inquire into the cause of the discrepancy as given by the nutation of the earth. MOTION OF THE AXIS OF THE VORTEX. If the axis of the terral vortex doe
PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  



Top keywords:

nutation

 
parallax
 

gravitation

 
deduced
 

diminishing

 

theory

 
phenomena
 

quantity

 

methods

 

affected


longitude

 
observers
 

Berlin

 

approximated

 

position

 

alternately

 

solely

 
horizontal
 

palpable

 

compared


increasing

 

depending

 

relative

 

surface

 

correct

 
written
 
legibly
 

VORTEX

 
terral
 

vortex


MOTION
 

inquire

 

discrepancy

 

furnishes

 
greater
 

derived

 

giving

 

suppose

 
respectable
 

wording


Newtonian

 
Happily
 

strict

 

absolutely

 

declare

 
unsafe
 

depend

 
follow
 

explanation

 

trifling