FREE BOOKS

Author's List




PREV.   NEXT  
|<   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150  
151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   >>   >|  
we find that these cubes are to each other, in the inverse ratio of the squares of the planet's distances; for, 2.21^3 : 6.59^3 :: 1^2 : 5.2^2, showing that both planets have condensed equally, allowing for the difference of temperature at the beginning. And we shall find, beginning at the sun, that the diameters of the nebulous planets, _ceteris paribus_, diminish outwards, giving for the nebulous sun a diameter of 16,000,000 miles,[39] thus indicating his original great temperature. That the original nebulous planets did rotate in the same time as they do at present, is proved by Saturn's ring; for if we make the calculation, about twice the diameter of Saturn. Now, the diameter of the planet is about 80,000 miles, which will also be the semi-diameter of the nebulous planet; and the middle of the outer ring has also a semi-diameter of 80,000 miles; therefore, the ring is the equatorial portion of the original nebulous planet, and ought, on this theory, to rotate in the same time as Saturn. According to Sir John Herschel, Saturn rotates in 10 hours, 29 minutes, and 17 seconds, and the ring rotates in 10 hours, 29 minutes, and 17 seconds: yet this is not the periodic time of a satellite, at the distance of the middle of the ring; neither ought the rings to rotate in the same time; yet as far as observation can be trusted, both the inner and outer ring do actually rotate in the same time. The truth is, the ring rotates too fast, if we derive its centrifugal force from the analogy of its satellites; but it is, no doubt, in equilibrium; and the effective mass of Saturn on the satellites is less than the true mass, in consequence of his radial stream being immensely increased by the additional force impressed on the ether, by the centrifugal velocity of the ring. If this be so, the mass of Saturn, derived from one of the inner satellites, will be less than the same mass derived from the great satellite, whose orbit is considerably inclined. The analogy we have mentioned, between the diameters of the nebulous planets and their distances, does not hold good in the case of Saturn, for the reason already assigned, viz.: that the nebulous planet was probably not a globe, but a cylindrical ring, vacant around the axis, as there is reason to suppose is the case at present. And now we have to ask the question, Did the ether involved in the nebulous planets rotate in the same time? This does not necessarily follow. The eth
PREV.   NEXT  
|<   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150  
151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   >>   >|  



Top keywords:

nebulous

 

Saturn

 

planets

 

rotate

 
diameter
 
planet
 

satellites

 

rotates

 

original

 

middle


derived

 

analogy

 

distances

 

centrifugal

 

temperature

 

minutes

 

seconds

 
satellite
 

diameters

 

beginning


present
 
reason
 

involved

 

suppose

 

radial

 

question

 

stream

 
necessarily
 

follow

 

effective


equilibrium

 
consequence
 

additional

 
mentioned
 

inclined

 

assigned

 
considerably
 
cylindrical
 

velocity

 

impressed


increased

 

immensely

 

vacant

 

distance

 

proved

 

calculation

 
showing
 

indicating

 
paribus
 

diminish