FREE BOOKS

Author's List




PREV.   NEXT  
|<   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167  
168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   >>   >|  
n distance, and another for the tangential current; but we are only considering here the general effect. By diminishing the comet's proper velocity in its orbit, if we consider the attraction of the sun to remain the same, the general effect _may_ be (for this depends on the tangential portion of the resolved force preponderating) that the absolute velocity will be increased, and the periodic time shortened; but after passing the perihelion, with the velocity of a smaller orbit, there is also superadded to this already undue velocity, the expulsive power of the radial stream, adding additional velocity to the comet; the orbit is therefore enlarged, and the periodic time increased. Hence the necessity of changing the "Constant of Resistance" after perihelion, and this will generally be found necessary in all cometary orbits, if this theory be true. But this question is one which may be emphatically called the most difficult of dynamical problems, and it may be long before it is fully understood. According to the calculations of Professor Encke, the comet's period is accelerated about 2 hours, 30 minutes, at each return, which he considers due to a resisting medium. May it not rather be owing to _the change of inclination of the major axis of the orbit, to the central plane of the vortex_? Suppose the inclination of the _plane_ of the orbit to remain unchanged, and the eccentricity of the orbit also, if the longitude of the perihelion coincides with that of either node, the major axis of the orbit lies in the ecliptic, and the comet then experiences the greatest mean effect from the radial stream; its mean distance is then, _ceteris paribus_, the greatest. When the angle between the perihelion and the nearest node increases, the mean force of the radial stream is diminished, and the mean distance is diminished also. When the angle is 90d, the effect is least, and the mean distance least. This is supposing the ecliptic the central plane of the vortex. When Encke's formula was applied to Biela's comet, it was inadequate to account for a tenth part of the acceleration; and although Biela moves in a much denser medium, and is of less dense materials, even this taken into account will not satisfy the observations,--making no other change in Encke's formula. We must therefore attribute it to changes in the elements of the orbits of these comets. Now, the effect of resistance should also have been noticed, as an acceleration of
PREV.   NEXT  
|<   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167  
168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   >>   >|  



Top keywords:

velocity

 

effect

 

distance

 

perihelion

 
radial
 
stream
 

diminished

 

formula

 

ecliptic

 

acceleration


periodic

 

orbits

 

account

 

greatest

 

general

 

central

 

inclination

 
change
 

tangential

 

medium


increased
 
vortex
 

remain

 

nearest

 

increases

 

coincides

 

Suppose

 
paribus
 

ceteris

 

unchanged


eccentricity

 
experiences
 

longitude

 
attribute
 

elements

 

noticed

 
resistance
 
comets
 

making

 

observations


inadequate

 

supposing

 

applied

 

denser

 

satisfy

 

materials

 
superadded
 

smaller

 
absolute
 

shortened