FREE BOOKS

Author's List




PREV.   NEXT  
|<   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101  
102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   >>   >|  
ter by a cut branch--notwithstanding the fact that he knew the absorption to depend largely on the leaves. {130b} It may be noticed that Sachs, in his imbibitional view of water-transport, may be counted a follower of Hales. In order to ascertain "whether there was any lateral communication of the sap and sap vessels, as there is of blood in animals," Hales (p. 121) made the experiment which has been repeated in modern laboratories, {130c} _i.e._ cutting a "gap to the pith," and another opposite to it and a few inches above. This he did on an oak branch six feet long whose basal end was placed in water. The branch continued to "perspire" for two days, but gave off only about half the amount of water transpired by a normal branch. {130d} He does not trouble himself about this difference, being satisfied of "great quantities of liquor having passed laterally by the gap." He is interested in the fact of lateral transmission in connexion with the experiment of the suspended tree (Fig. 24, p. 126), which is dependent on the neighbours to which it is grafted for its water supply. This seems to be one of the results that convinced him that there is a distribution of food material which cannot be described as circulation of sap in the sense that was then in vogue. Hales (p. 143) was one of the first {131a} to make the well-known experiment--the removal of a ring of bark, with the result that the edge of bark nearest the base of the branch swells and thickens in a characteristic manner. He points out that if a number of rings are made one above the other, the swelling is seen at the lower edge of each isolated piece of bark, and therefore (p. 143) the swelling must be attributed "to some other cause than the stoppage of the sap in its return downwards," because the first gap in the bark should be sufficient to check the whole of the flowing sap. {131b} He must, in fact have seen that there is a redistribution of plastic material in each section of bark. We now for the moment leave the subject of transpiration and pass on to that of root-pressure on which Hales is equally illuminating. His first experiment (_Vegetable Staticks_, p. 100), was with a vine, to which he attached a vertical pipe made of three lengths of glass-tubing jointed together. His method is worth notice. He attached the stump to the manometer with a "stiff cement made of melted Beeswax and Turpentine, and bound it over with several folds of w
PREV.   NEXT  
|<   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101  
102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   >>   >|  



Top keywords:

branch

 

experiment

 

attached

 

lateral

 
material
 

swelling

 

attributed

 

isolated

 

swells

 

circulation


removal

 

manner

 

points

 
characteristic
 
thickens
 
result
 

nearest

 

stoppage

 

number

 

jointed


tubing

 

method

 

lengths

 
vertical
 

notice

 

Turpentine

 
Beeswax
 
manometer
 

cement

 
melted

Staticks
 

flowing

 
redistribution
 

plastic

 
sufficient
 

section

 

pressure

 
equally
 

illuminating

 

Vegetable


moment

 
subject
 

transpiration

 

return

 
transmission
 

laboratories

 

modern

 

repeated

 
animals
 

cutting