FREE BOOKS

Author's List




PREV.   NEXT  
|<   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182  
183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   >>  
f at right angles to its surface, may deposit themselves like a very thin film on objects placed in their path. Various physicists, among them M. Houllevigue, have studied this phenomenon, and in the case of pressures between 1/20 and 1/100 of a millimetre, the last-named scholar has obtained mirrors of most metals, a phenomenon he designates by the name of ionoplasty. But in spite of all these accessory phenomena, which even sometimes conceal those first observed, the existence of the electron in the cathodic flux remains the essential characteristic. The electron can be apprehended in the cathodic ray by the study of its essential properties; and J.J. Thomson gave great value to the hypothesis by his measurements. At first he meant to determine the speed of the cathode rays by direct experiment, and by observing, in a revolving mirror, the relative displacement of two bands due to the excitement of two fluorescent screens placed at different distances from the cathode. But he soon perceived that the effect of the fluorescence was not instantaneous, and that the lapse of time might form a great source of error, and he then had recourse to indirect methods. It is possible, by a simple calculation, to estimate the deviations produced on the rays by a magnetic and an electric field respectively as a function of the speed of propagation and of the relation of the charge to the material mass of the electron. The measurement of these deviations will then permit this speed and this relation to be ascertained. Other processes may be used which all give the same two quantities by two suitably chosen measurements. Such are the radius of the curve taken by the trajectory of the pencil in a perpendicular magnetic field and the measure of the fall of potential under which the discharge takes place, or the measure of the total quantity of electricity carried in one second and the measure of the calorific energy which may be given, during the same period, to a thermo-electric junction. The results agree as well as can be expected, having regard to the difficulty of the experiments; the values of the speed agree also with those which Professor Wiechert has obtained by direct measurement. The speed never depends on the nature of the gas contained in the Crookes tube, but varies with the value of the fall of potential at the cathode. It is of the order of one tenth of the speed of light, and it may rise as high as one third. Th
PREV.   NEXT  
|<   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182  
183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   >>  



Top keywords:
measure
 

cathode

 
electron
 

cathodic

 
essential
 

measurements

 

electric

 
relation
 

magnetic

 

deviations


measurement
 

direct

 

potential

 

phenomenon

 

obtained

 
processes
 

permit

 
simple
 
ascertained
 

Crookes


chosen

 

suitably

 

quantities

 

varies

 

calculation

 

estimate

 

produced

 

charge

 

material

 

contained


function
 

propagation

 

expected

 
quantity
 

electricity

 

regard

 

carried

 

junction

 
thermo
 
energy

results

 

calorific

 
difficulty
 

trajectory

 

depends

 

nature

 

radius

 

period

 

pencil

 

perpendicular