FREE BOOKS

Author's List




PREV.   NEXT  
|<   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88  
89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   >>   >|  
point. When I took the flask from the lamp, I observed to you that the upper part of it was filled with vapour; this being compelled to yield its caloric to the cold water, was again condensed into water-- What, then, filled the upper part of the flask? EMILY. Nothing; for it was too well corked for the air to gain admittance, and therefore the upper part of the flask must be a vacuum. MRS. B. The water below, therefore, no longer sustains the pressure of the atmosphere, and will consequently boil at a much lower temperature. Thus, you see, though it had lost many degrees of heat, it began boiling again the instant the vacuum was formed above it. The boiling has now ceased, the temperature of the water being still farther reduced; if it had been ether, instead of water, it would have continued boiling much longer, for ether boils, under the usual atmospheric pressure, at a temperature as low as 100 degrees; and in a vacuum it boils at almost any temperature; but water being a more dense fluid, requires a more considerable quantity of caloric to make it evaporate quickly, even when the pressure of the atmosphere is removed. EMILY. What proportion of vapour can the atmosphere contain in a state of solution? MRS. B. I do not know whether it has been exactly ascertained by experiment; but at any rate this proportion must vary, both according to the temperature and the weight of the atmosphere; for the lower the temperature, and the greater the pressure, the smaller must be the proportion of vapour that the atmosphere can contain. To conclude the subject of free caloric, I should mention _Ignition_, by which is meant that emission of light which is produced in bodies at a very high temperature, and which is the effect of accumulated caloric. EMILY. You mean, I suppose, that light which is produced by a burning body? MRS. B. No: ignition is quite independent of combustion. Clay, chalk, and indeed all incombustible substances, may be made red hot. When a body burns, the light emitted is the effect of a chemical change which takes place, whilst ignition is the effect of caloric alone, and no other change than that of temperature is produced in the ignited body. All solid bodies, and most liquids, are susceptible of ignition, or, in other words, of being heated so as to become luminous; and it is remarkable that this takes place pretty nearly at the same temperature in all bodies, that is, at ab
PREV.   NEXT  
|<   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88  
89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   >>   >|  



Top keywords:

temperature

 

atmosphere

 
caloric
 

pressure

 

boiling

 

ignition

 

vacuum

 
vapour
 

bodies

 

proportion


produced

 

effect

 

change

 
degrees
 
filled
 

longer

 

Ignition

 
remarkable
 

emission

 

heated


mention
 

luminous

 
weight
 

greater

 

smaller

 

pretty

 

accumulated

 

conclude

 

subject

 
suppose

ignited

 

substances

 

incombustible

 
chemical
 

emitted

 
burning
 
susceptible
 

whilst

 

liquids

 
combustion

independent

 
sustains
 
admittance
 

instant

 

formed

 

corked

 

observed

 
compelled
 
Nothing
 

condensed