FREE BOOKS

Author's List




PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>   >|  
erve, for instance, for D sharp and for E flat, whereas the two notes are in reality not identical.[1] To secure correct tuning and tone intervals throughout, forty-eight keys per octave are required, instead of the twelve now made to suffice. In what is called the _equal temperament_ system the attempt is made to divide the octave into twelve equal parts or semi-tones, thus rendering all keys alike. To do this it is necessary to slightly flatten all the fifths and sharpen the major thirds. The difference from just intonation is about one-fiftieth of a semi-tone. Although recommended and used by J. S. Bach, equal temperament was not introduced into English organs until 1852. Much has been lost by adopting equal temperament, but more has been gained. To a sensitive ear, the sharp thirds and fourths, the flat fifths and other discordant intervals of our modern keyed instrument, are a constant source of pain; but the average organist has become so accustomed to the defect that he actually fails to notice it! The change to equal temperament has on the other hand greatly increased the scope of the organ and has rendered possible the performance of all compositions and transcriptions regardless of key or modulation. The tuning of an organ is seriously affected by the temperature of the surrounding air. Increased heat causes the air in the open pipes to expand and sound sharp contrasted with the stopped pipes through which the air cannot so freely circulate. The reeds are affected differently, the expansion of their tongues by heat causing them to flatten sufficiently to counteract the sharpening named above. Hence the importance of an equable temperature and the free circulation of air through swell-boxes, as described on page 59, _ante_. NEW METHOD OF REED TUNING. Organ reed pipes, especially those of more delicate tone, fail to stand well in tune, especially when the tuner is in a hurry or when he does not know enough of his business to take the spring out of the reed wire after the note has been brought into tune. Few persons fully understand the reason why reeds fail to stand in tune as they ought to. [Illustration: Figs. 31-35. New Method of Tuning Reeds] Figures 31, 32, and 33 will serve to make clear the chief cause for reeds going out of tune. Figure 31 may be taken to represent a reed block, eschallot, tongue and tuning wire at rest. In this case the tuning wire will be pressing firm
PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>   >|  



Top keywords:

tuning

 

temperament

 

thirds

 

fifths

 

flatten

 

temperature

 
affected
 

intervals

 

twelve

 

octave


TUNING

 

METHOD

 
sharpening
 

expansion

 

tongues

 

causing

 

differently

 
circulate
 
stopped
 

freely


sufficiently

 
counteract
 

circulation

 
equable
 
importance
 

Method

 

Tuning

 

Figures

 
Figure
 

pressing


tongue

 

eschallot

 

represent

 

business

 

spring

 

brought

 

Illustration

 

reason

 

persons

 
understand

delicate

 
greatly
 

slightly

 

sharpen

 
difference
 

rendering

 

recommended

 

Although

 
intonation
 

fiftieth