FREE BOOKS

Author's List




PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  
, as shown in Figs. 12 and 13, so as to clear itself easily. When the hole in the bolster or die block is of a larger diameter than the punch, the piece of metal thrust out is of larger diameter on the bottom side, and it comes out with an ease proportionate to the difference between the lower and upper diameters; or, in other words, it produces a taper hole in the plate, but allows the punching to be done with less consumption of power and, it is said, with less strain on the plate. [Illustration: FIG. 12.] [Illustration: FIG. 13.] As to the difference which should exist between the diameter of the punch and the die hole, this varies a little with the thickness of the plate punched, or should do so in all carefully executed work, for it is easy to understand that the die which might give a suitable taper in a three-fourths inch plate would give too great a taper in a three-eighths inch plate. There is no fixed rule; practical experience determines this in a rough and ready way--often a very rough way, indeed, for if a machine has to punch different thicknesses of plate for the same size of rivets, the workman will seldom take the trouble to change the die with every variation of thickness. The maker of punches and dies generally allows about three sixty-fourths or 0.0468 of an inch clearance. The following formula is also used by punch and die makers: Clearance = D = d + 0.2t where D = diameter of hole in die block; d = diameter of cutting edge of punch; t = thickness of plate in fractions of an inch; that is to say, the diameter of the die hole equals diameter of punch plus two-tenths the thickness of the plate to be punched. _Example_.--Given a plate 3/8 or 0.375 of an inch thick, the diameter of the punch being 13/16 or 0.8125 of an inch, then the diameter of the die hole will be as follows: Diameter of die hole = 0.8125 + 0.375 X 0.2 = 0.8875 inch diameter, or say 7/8 or 0.875 inch diameter. Punches are generally made flat on their cutting edge, as shown in Fig. 12. There are also punches made spiral on their cutting edge, as shown in Fig. 13. This punch, instead of being flat, as in Fig. 12, is of a helical form, as shown in Fig. 13, so as to have a gradual shearing action commencing at the center and traveling round to the circumference. Its form may be explained by imagining the upper cutter of a shearing machine being rolled upon itself so as to form a cylinder of
PREV.   NEXT  
|<   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34  
35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   >>   >|  



Top keywords:

diameter

 

thickness

 

cutting

 

punched

 

punches

 

generally

 

Illustration

 

machine

 

fourths

 

difference


shearing

 

larger

 

equals

 

fractions

 

circumference

 

makers

 

rolled

 

clearance

 
cylinder
 

formula


traveling

 
Clearance
 

imagining

 

cutter

 

explained

 

Diameter

 

helical

 

spiral

 

Punches

 
Example

tenths
 

center

 

gradual

 

action

 
commencing
 
determines
 
consumption
 

punching

 
produces
 

strain


carefully

 

executed

 

varies

 

bolster

 

easily

 

thrust

 

proportionate

 

diameters

 

bottom

 

rivets