FREE BOOKS

Author's List




PREV.   NEXT  
|<   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104  
105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   >>   >|  
e year 433 B.C., but the length of the hour varied with the time of the year, since the Greeks divided the day into twelve equal parts. Dials were common at Rome in the time of Plautus, 224 B.C.; but there was a difficulty in using them, since they failed at night and in cloudy weather, and could not be relied on. Hence the introduction of water-clocks instead. Aristarchus is said to have combated (280 B.C.) the geocentric theory so generally received by philosophers, and to have promulgated the hypothesis "that the fixed stars and the sun are immovable; that the earth is carried round the sun in the circumference of a circle of which the sun is the centre; and that the sphere of the fixed stars, having the same centre as the sun, is of such magnitude that the orbit of the earth is to the distance of the fixed stars as the centre of the sphere of the fixed stars is to its surface." Aristarchus also, according to Plutarch, explained the apparent annual motion of the sun in the ecliptic by supposing the orbit of the earth to be inclined to its axis. There is no evidence that this great astronomer supported his heliocentric theory with any geometrical proof, although Plutarch maintains that he demonstrated it. This theory gave great offence, especially to the Stoics; and Cleanthes, the head of the school at that time, maintained that the author of such an impious doctrine should be punished. Aristarchus left a treatise "On the Magnitudes and Distances of the Sun and Moon;" and his methods to measure the apparent diameters of the sun and moon are considered theoretically sound by modern astronomers, but practically inexact owing to defective instruments. He estimated the diameter of the sun at the seven hundred and twentieth part of the circumference of the circle which it describes in its diurnal revolution, which is not far from the truth; but in this treatise he does not allude to his heliocentric theory. Archimedes of Syracuse, born 287 B.C., is stated to have measured the distance of the sun, moon, and planets, and he constructed an orrery in which he exhibited their motions. But it was not in the Grecian colony of Syracuse, but of Alexandria, that the greatest light was shed on astronomical science. Here Aristarchus resided, and also Eratosthenes, who lived between the years 276 and 196 B.C. The latter was a native of Athens, but was invited by Ptolemy Euergetes to Alexandria, and placed at the head of the library.
PREV.   NEXT  
|<   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104  
105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   >>   >|  



Top keywords:

Aristarchus

 

theory

 

centre

 
circle
 

treatise

 

apparent

 

Syracuse

 
sphere
 
heliocentric
 

Plutarch


distance

 

Alexandria

 
circumference
 

hundred

 

diameter

 

Distances

 

Magnitudes

 

methods

 

impious

 

doctrine


punished

 

measure

 

diameters

 
inexact
 

defective

 

instruments

 

practically

 

astronomers

 

considered

 
theoretically

twentieth

 

modern

 

estimated

 

Eratosthenes

 

resided

 

astronomical

 
science
 
Ptolemy
 
Euergetes
 
library

invited

 
Athens
 

native

 

greatest

 

allude

 
Archimedes
 

describes

 

diurnal

 
revolution
 
stated