FREE BOOKS

Author's List




PREV.   NEXT  
|<   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137  
138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   >>   >|  
t be another constituent part of nitrous air, entering the common air, is the cause of the diminution it suffers in this process; as it is the cause of a similar diminution, in a variety of other processes. I would observe, that it is not peculiar to nitrous air to be a test of the fitness of air for respiration. Any other process by which air is diminished and made noxious answers the same purpose. Liver of sulphur for instance, the calcination of metals, or a mixture of iron filings and brimstone will do just the same thing; but the application of them is not so easy, or elegant, and the effect is not so soon perceived. In fact, it is _phlogiston_ that is the test. If the air be so loaded with this principle that it can take no more, which is seen by its not being diminished in any of the processes above mentioned, it is noxious; and it is wholesome in proportion to the quantity of phlogiston that it is able to take. This, I have no doubt, is the true theory of the diminution of common air by nitrous air, the redness of the appearance being nothing more than the usual colour of the fumes, of spirit of nitre, which is now disengaged from the superabundant phlogiston with which it was combined in the nitrous air, and ready to form another union with any thing that is at hand, and capable of it. With the volatile alkali it forms nitrous ammoniac, water imbibes it like any other acid, even quicksilver is corroded by it; but this action being slow, the redness in this mixture of nitrous and common air continues much longer when the process is made in quicksilver, than when it is made in water, and the diminution, as I have also observed; is by no means so great. I was confirmed in this opinion when I put a bit of volatile alkaline salt into the jar of quicksilver in which I made the mixture of nitrous and common air. In these circumstances, the vessel being previously filled with the alkaline fumes, the acid immediately joined them, formed the white clouds above mentioned, and the diminution proceeded almost as far as when the process was made in water. That it did not proceed quite so far, I attribute chiefly to the small quantity of calx formed by the slight solution of mercury with the acid fumes not being able to absorb all the fixed air that is precipitated from the common air by the phlogiston. In part, also, it may be owing to the small quantify of surface in the quicksilver in the vessels that I made use
PREV.   NEXT  
|<   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137  
138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   >>   >|  



Top keywords:

nitrous

 

common

 

diminution

 

quicksilver

 

phlogiston

 

process

 

mixture

 

alkaline

 
formed
 

mentioned


redness

 

volatile

 

quantity

 

diminished

 

noxious

 

processes

 

opinion

 
previously
 

filled

 

vessel


circumstances
 

confirmed

 

action

 

corroded

 

suffers

 

similar

 

continues

 

observed

 

entering

 

longer


immediately

 

constituent

 

absorb

 
mercury
 

slight

 
solution
 

precipitated

 

vessels

 

surface

 

quantify


proceeded

 
clouds
 
attribute
 
chiefly
 

proceed

 

joined

 
variety
 

application

 

answers

 

metals