FREE BOOKS

Author's List




PREV.   NEXT  
|<   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127  
128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   >>   >|  
linkages break and so permit the two chains of 4 C's to unite to form one ring of eight. If you have ever played ring-around-a-rosy you will get the idea. In Chapter IV I explained that the anilin dyes are built up upon the benzene ring of six carbon atoms. The rubber ring consists of eight at least and probably more. Any substance containing that peculiar carbon chain with two double links C=C-C=C can double up--polymerize, the chemist calls it--into a rubber-like substance. So we may have many kinds of rubber, some of which may prove to be more useful than that which happens to be found in nature. With the structural formula of Harries as a clue chemists all over the world plunged into the problem with renewed hope. The famous Bayer dye works at Elberfeld took it up and there in August, 1909, Dr. Fritz Hofmann worked out a process for the converting of pure isoprene into rubber by heat. Then in 1910 Harries happened upon the same sodium reaction as Matthews, but when he came to get it patented he found that the Englishman had beaten him to the patent office by a few weeks. This Anglo-German rivalry came to a dramatic climax in 1912 at the great hall of the College of the City of New York when Dr. Carl Duisberg, of the Elberfeld factory, delivered an address on the latest achievements of the chemical industry before the Eighth--and the last for a long time--International Congress of Applied Chemistry. Duisberg insisted upon talking in German, although more of his auditors would have understood him in English. He laid full emphasis upon German achievements and cast doubt upon the claim of "the Englishman Tilden" to have prepared artificial rubber in the eighties. Perkin, of Manchester, confronted him with his new process for making rubber from potatoes, but Duisberg countered by proudly displaying two automobile tires made of synthetic rubber with which he had made a thousand-mile run. The intense antagonism between the British and German chemists at this congress was felt by all present, but we did not foresee that in two years from that date they would be engaged in manufacturing poison gas to fire at one another. It was, however, realized that more was at stake than personal reputation and national prestige. Under pressure of the new demand for automobiles the price of rubber jumped from $1.25 to $3 a pound in 1910, and millions had been invested in plantations. If Professor Perkin was right when he told the con
PREV.   NEXT  
|<   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127  
128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   >>   >|  



Top keywords:

rubber

 

German

 
Duisberg
 

double

 

Perkin

 
Englishman
 

substance

 

Harries

 

achievements

 

carbon


process

 

Elberfeld

 
chemists
 

automobile

 
artificial
 
displaying
 
proudly
 

confronted

 

prepared

 

Manchester


making

 

countered

 
potatoes
 

eighties

 

International

 

Applied

 
Congress
 

Eighth

 

address

 

latest


chemical

 

industry

 

Chemistry

 

insisted

 

emphasis

 

talking

 

auditors

 
understood
 

English

 

Tilden


pressure

 

demand

 
automobiles
 
prestige
 

national

 

realized

 

personal

 
reputation
 

jumped

 

Professor