FREE BOOKS

Author's List




PREV.   NEXT  
|<   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126  
127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   >>   >|  
Institute, and after eighteen months' hard work he discovered a process of fermentation by which a large amount of fusel oil can be obtained from any starchy stuff. Hitherto the aim in fermentation and distillation had been to obtain as small a proportion of fusel as possible, for fusel oil is a mixture of the heavier alcohols, all of them more poisonous and malodorous than common alcohol. But here, as has often happened in the history of industrial chemistry, the by-product turned out to be more valuable than the product. From fusel oil by the use of chlorine isoprene can be prepared, so the chain was complete. But meanwhile the Germans had been making equal progress. In 1905 Prof. Karl Harries, of Berlin, found out the name of the caoutchouc molecule. This discovery was to the chemists what the architect's plan of a house is to the builder. They knew then what they were trying to construct and could go about their task intelligently. Mark Twain said that he could understand something about how astronomers could measure the distance of the planets, calculate their weights and so forth, but he never could see how they could find out their names even with the largest telescopes. This is a joke in astronomy but it is not in chemistry. For when the chemist finds out the structure of a compound he gives it a name which means that. The stuff came to be called "caoutchouc," because that was the way the Spaniards of Columbus's time caught the Indian word "cahuchu." When Dr. Priestley called it "India rubber" he told merely where it came from and what it was good for. But when Harries named it "1-5-dimethyl-cyclo-octadien-1-5" any chemist could draw a picture of it and give a guess as to how it could be made. Even a person without any knowledge of chemistry can get the main point of it by merely looking at this diagram: C C C---C || || || | C--C C C--C C | | --> | | C C--C C C--C || || | || C C C---C [Illustration: isoprene _turns into_ caoutchouc] I have dropped the 16 H's or hydrogen atoms of the formula for simplicity's sake. They simply hook on wherever they can. You will see that the isoprene consists of a chain of four carbon atoms (represented by the C's) with an extra carbon on the side. In the transformation of this colorless liquid into soft rubber two of the double
PREV.   NEXT  
|<   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126  
127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   >>   >|  



Top keywords:

caoutchouc

 

isoprene

 
chemistry
 

product

 

rubber

 
fermentation
 

carbon

 

chemist

 

called

 

Harries


Columbus

 

compound

 
structure
 

Spaniards

 
cahuchu
 
Indian
 
dimethyl
 

caught

 

Priestley

 

consists


simply

 

hydrogen

 
formula
 

simplicity

 

represented

 

liquid

 
double
 

colorless

 

transformation

 

person


knowledge

 

octadien

 

picture

 

dropped

 

Illustration

 

diagram

 

intelligently

 
alcohol
 

common

 

malodorous


poisonous

 

happened

 
history
 
chlorine
 

prepared

 

complete

 

industrial

 
turned
 

valuable

 

alcohols