FREE BOOKS

Author's List




PREV.   NEXT  
|<   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116  
117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   >>   >|  
ween them, and the exterior by two Refractions, and two sorts of Reflexions between them in each Drop of Water, and proves his Explications by Experiments made with a Phial full of Water, and with Globes of Glass filled with Water, and placed in the Sun to make the Colours of the two Bows appear in them. The same Explication _Des-Cartes_ hath pursued in his Meteors, and mended that of the exterior Bow. But whilst they understood not the true Origin of Colours, it's necessary to pursue it here a little farther. For understanding therefore how the Bow is made, let a Drop of Rain, or any other spherical transparent Body be represented by the Sphere BNFG, [in _Fig._ 14.] described with the Center C, and Semi-diameter CN. And let AN be one of the Sun's Rays incident upon it at N, and thence refracted to F, where let it either go out of the Sphere by Refraction towards V, or be reflected to G; and at G let it either go out by Refraction to R, or be reflected to H; and at H let it go out by Refraction towards S, cutting the incident Ray in Y. Produce AN and RG, till they meet in X, and upon AX and NF, let fall the Perpendiculars CD and CE, and produce CD till it fall upon the Circumference at L. Parallel to the incident Ray AN draw the Diameter BQ, and let the Sine of Incidence out of Air into Water be to the Sine of Refraction as I to R. Now, if you suppose the Point of Incidence N to move from the Point B, continually till it come to L, the Arch QF will first increase and then decrease, and so will the Angle AXR which the Rays AN and GR contain; and the Arch QF and Angle AXR will be biggest when ND is to CN as sqrt(II - RR) to sqrt(3)RR, in which case NE will be to ND as 2R to I. Also the Angle AYS, which the Rays AN and HS contain will first decrease, and then increase and grow least when ND is to CN as sqrt(II - RR) to sqrt(8)RR, in which case NE will be to ND, as 3R to I. And so the Angle which the next emergent Ray (that is, the emergent Ray after three Reflexions) contains with the incident Ray AN will come to its Limit when ND is to CN as sqrt(II - RR) to sqrt(15)RR, in which case NE will be to ND as 4R to I. And the Angle which the Ray next after that Emergent, that is, the Ray emergent after four Reflexions, contains with the Incident, will come to its Limit, when ND is to CN as sqrt(II - RR) to sqrt(24)RR, in which case NE will be to ND as 5R to I; and so on infinitely, the Numbers 3, 8, 15, 24, &c. being gather'd by
PREV.   NEXT  
|<   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116  
117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   >>   >|  



Top keywords:
incident
 

Refraction

 

emergent

 

Reflexions

 

decrease

 

increase

 

Incidence

 
exterior
 

reflected


Sphere
 

Colours

 

Parallel

 

Circumference

 

Diameter

 

gather

 
continually
 

Incident

 
produce

biggest

 

Numbers

 

suppose

 
infinitely
 

Emergent

 

pursued

 

Meteors

 

mended

 

Cartes


Explication
 

whilst

 

pursue

 
Origin
 

understood

 
proves
 

Explications

 

Refractions

 

Experiments


filled

 

Globes

 

farther

 

refracted

 

diameter

 

cutting

 

Perpendiculars

 
Produce
 
understanding

spherical

 
transparent
 

Center

 

represented