FREE BOOKS

Author's List




PREV.   NEXT  
|<   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126  
127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   >>   >|  
e Light XY. If the refracting Angle of either Prism be the bigger, that Prism must be so much the nearer to the Lens. You will know when the Prisms and the Lens are well set together, by observing if the beam of Light XY, which comes out of the second Prism be perfectly white to the very edges of the Light, and at all distances from the Prism continue perfectly and totally white like a beam of the Sun's Light. For till this happens, the Position of the Prisms and Lens to one another must be corrected; and then if by the help of a long beam of Wood, as is represented in the Figure, or by a Tube, or some other such Instrument, made for that Purpose, they be made fast in that Situation, you may try all the same Experiments in this compounded beam of Light XY, which have been made in the Sun's direct Light. For this compounded beam of Light has the same appearance, and is endow'd with all the same Properties with a direct beam of the Sun's Light, so far as my Observation reaches. And in trying Experiments in this beam you may by stopping any of the Colours, _p_, _q_, _r_, _s_, and _t_, at the Lens, see how the Colours produced in the Experiments are no other than those which the Rays had at the Lens before they entered the Composition of this Beam: And by consequence, that they arise not from any new Modifications of the Light by Refractions and Reflexions, but from the various Separations and Mixtures of the Rays originally endow'd with their colour-making Qualities. So, for instance, having with a Lens 4-1/4 Inches broad, and two Prisms on either hand 6-1/4 Feet distant from the Lens, made such a beam of compounded Light; to examine the reason of the Colours made by Prisms, I refracted this compounded beam of Light XY with another Prism HIK _kh_, and thereby cast the usual Prismatick Colours PQRST upon the Paper LV placed behind. And then by stopping any of the Colours _p_, _q_, _r_, _s_, _t_, at the Lens, I found that the same Colour would vanish at the Paper. So if the Purple _p_ was stopp'd at the Lens, the Purple P upon the Paper would vanish, and the rest of the Colours would remain unalter'd, unless perhaps the blue, so far as some purple latent in it at the Lens might be separated from it by the following Refractions. And so by intercepting the green upon the Lens, the green R upon the Paper would vanish, and so of the rest; which plainly shews, that as the white beam of Light XY was compounded of several Lights va
PREV.   NEXT  
|<   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126  
127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   >>   >|  



Top keywords:
Colours
 

compounded

 

Prisms

 

Experiments

 

vanish

 

Purple

 

stopping

 
Refractions
 

direct

 
perfectly

refracted

 

reason

 

Prismatick

 

examine

 

distant

 
nearer
 

instance

 
Qualities
 

colour

 

making


Inches

 
intercepting
 

separated

 

latent

 

Lights

 

plainly

 

purple

 
bigger
 

Colour

 

unalter


remain
 

refracting

 
appearance
 

totally

 

continue

 

distances

 

Observation

 

reaches

 

Properties

 

Instrument


Figure

 

corrected

 

Purpose

 
Position
 
Situation
 

consequence

 
entered
 

Composition

 

Modifications

 

Separations