FREE BOOKS

Author's List




PREV.   NEXT  
|<   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32  
33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   >>   >|  
of water clings to its surface. This is adhesion. The more surface area there is, the greater the amount of moisture that can be held by adhesion. If we crushed that stone into dust, we would greatly increase the amount of water that could adhere to the original material. Clay particles, it should be noted, are so small that clay's ability to hold water is not as great as its mathematically computed surface area would indicate. Surface Area of One Gram of Soil Particles Particle type Diameter of Number of particles particles Surface area in mm per gm in sq. cm. Very coarse sand 2.00-1.00 90 11 Coarse sand 1.00-0.50 720 23 Medium sand 0.50-0.25 5,700 45 Fine sand 0.25-0.10 46,000 91 Very fine sand 0.10-0.05 772,000 227 Silt 0.05-0.002 5,776,000 454 Clay Below 0.002 90,260,853,000 8,000,000 Source: Foth, Henry D., _Fundamentals of Soil Science,_ 8th ed. (New York: John Wylie & Sons, 1990). This direct relationship between particle size, surface area, and water-holding capacity is so essential to understanding plant growth that the surface areas presented by various sizes of soil particles have been calculated. Soils are not composed of a single size of particle. If the mix is primarily sand, we call it a sandy soil. If the mix is primarily clay, we call it a clay soil. If the soil is a relatively equal mix of all three, containing no more than 35 percent clay, we call it a loam. Available Moisture (inches of water per foot of soil) Soil Texture Average Amount Very coarse sand 0.5 Coarse sand 0.7 Sandy 1.0 Sandy loam 1.4 Loam 2.0 Clay loam 2.3 Silty clay 2.5 Clay 2.7 Source: _Fundamentals of Soil Science_. Adhering water films can vary greatly in thickness. But if the water molecules adhering to a soil particle become too thick, the force of adhesion becomes too weak to resist the force of gravity, and some water flows deeper into the soil. When water films are relatively thick the soil feels wet and plant roots can easily absorb moisture. "Field capacity
PREV.   NEXT  
|<   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32  
33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   >>   >|  



Top keywords:

surface

 

particles

 

adhesion

 
particle
 
primarily
 

Source

 

Surface

 
Coarse
 

coarse

 

capacity


greatly

 

amount

 

moisture

 
Fundamentals
 

Science

 

essential

 

presented

 
growth
 

understanding

 
single

composed

 
calculated
 

resist

 

gravity

 
adhering
 

deeper

 

easily

 

absorb

 

molecules

 

inches


Texture

 

Moisture

 

Available

 

percent

 
Average
 

Amount

 
thickness
 
Adhering
 
computed
 

mathematically


ability

 

Number

 

Diameter

 
Particles
 

Particle

 

crushed

 

greater

 
clings
 

increase

 
material