FREE BOOKS

Author's List




PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>   >|  
ening tend to discount the replacement of surface moisture by capillarity, considering this flow an insignificant factor compared with the moisture needs of crops. But conventional agriculture focuses on maximized yields through high plant densities. Capillarity is too slow to support dense crop stands where numerous root systems are competing, but when a single plant can, without any competition, occupy a large enough area, moisture replacement by capillarity becomes significant. How Plants Obtain Water Most gardeners know that plants acquire water and minerals through their root systems, and leave it at that. But the process is not quite that simple. The actively growing, tender root tips and almost microscopic root hairs close to the tip absorb most of the plant's moisture as they occupy new territory. As the root continues to extend, parts behind the tip cease to be effective because, as soil particles in direct contact with these tips and hairs dry out, the older roots thicken and develop a bark, while most of the absorbent hairs slough off. This rotation from being actively foraging tissue to becoming more passive conductive and supportive tissue is probably a survival adaptation, because the slow capillary movement of soil moisture fails to replace what the plant used as fast as the plant might like. The plant is far better off to aggressively seek new water in unoccupied soil than to wait for the soil its roots already occupy to be recharged. A simple bit of old research magnificently illustrated the significance of this. A scientist named Dittmer observed in 1937 that a single potted ryegrass plant allocated only 1 cubic foot of soil to grow in made about 3 miles of new roots and root hairs every day. (Ryegrasses are known to make more roots than most plants.) I calculate that a cubic foot of silty soil offers about 30,000 square feet of surface area to plant roots. If 3 miles of microscopic root tips and hairs (roughly 16,000 lineal feet) draws water only from a few millimeters of surrounding soil, then that single rye plant should be able to continue ramifying into a cubic foot of silty soil and find enough water for quite a few days before wilting. These arithmetical estimates agree with my observations in the garden, and with my experiences raising transplants in pots. Lowered Plant Density: The Key to Water-Wise Gardening I always think my latest try at writing a near-perfect garden book i
PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   >>   >|  



Top keywords:

moisture

 

occupy

 

single

 
actively
 
capillarity
 

simple

 

plants

 
tissue
 

surface

 

replacement


microscopic

 

garden

 

systems

 
Dittmer
 

scientist

 

illustrated

 

significance

 
observed
 

perfect

 
Lowered

transplants

 
ryegrass
 

allocated

 

potted

 
magnificently
 

unoccupied

 

aggressively

 

latest

 

research

 

Gardening


recharged

 

Density

 

raising

 

roughly

 
square
 

ramifying

 
surrounding
 
millimeters
 
lineal
 

continue


offers

 

writing

 

Ryegrasses

 
experiences
 

observations

 

calculate

 

wilting

 
arithmetical
 

estimates

 
develop