FREE BOOKS

Author's List




PREV.   NEXT  
|<   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   >>  
NS. The young lady in the illustration is confronted with a little cutting-out difficulty in which the reader may be glad to assist her. She wishes, for some reason that she has not communicated to me, to cut that square piece of valuable material into four parts, all of exactly the same size and shape, but it is important that every piece shall contain a lion and a crown. As she insists that the cuts can only be made along the lines dividing the squares, she is considerably perplexed to find out how it is to be done. Can you show her the way? There is only one possible method of cutting the stuff. [Illustration: +-+-+-+-+-+-+ | | | | | | | +-+-+-+-+-+-+ | |L|L|L| | | +-+-+-+-+-+-+ | | |C|C| | | +-+-+-+-+-+-+ | | |C|C| | | +-+-+-+-+-+-+ |L| | | | | | +-+-+-+-+-+-+ | | | | | | | +-+-+-+-+-+-+ ] 290.--BOARDS WITH AN ODD NUMBER OF SQUARES. We will here consider the question of those boards that contain an odd number of squares. We will suppose that the central square is first cut out, so as to leave an even number of squares for division. Now, it is obvious that a square three by three can only be divided in one way, as shown in Fig. 1. It will be seen that the pieces A and B are of the same size and shape, and that any other way of cutting would only produce the same shaped pieces, so remember that these variations are not counted as different ways. The puzzle I propose is to cut the board five by five (Fig. 2) into two pieces of the same size and shape in as many different ways as possible. I have shown in the illustration one way of doing it. How many different ways are there altogether? A piece which when turned over resembles another piece is not considered to be of a different shape. [Illustration: +---*---+---+ | H | | +---*===*---+ | HHHHH | +---*===*---+ | | H | +---+---*---+ Fig 1] [Illustration: +---+---+---+---+---+ | | | | | | *===*===*===*---+---+ | | | H | | +---+---*===*---+---+ | | HHHHH | | +---+---*===*---+---+ | | H | | | +---+---*===*===*===* | H | | | | +---*---+---+---+---+ Fig 2] 291.--THE GRAND LAMA'S PROBLEM. Once upon a time there was a Grand Lama who had a chessboard made of pure gold, magnificently engraved, and, of course, of great value. Every year a
PREV.   NEXT  
|<   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   >>  



Top keywords:

squares

 

square

 

Illustration

 

pieces

 

cutting

 

number

 

illustration

 

variations

 

counted


chessboard

 
remember
 

shaped

 

produce

 
divided
 
magnificently
 
engraved
 

altogether

 
obvious

resembles

 

turned

 

puzzle

 

considered

 

PROBLEM

 

propose

 

material

 

valuable

 

important


insists

 

communicated

 

difficulty

 
confronted
 
reader
 
reason
 

wishes

 

assist

 

question


SQUARES

 

NUMBER

 
boards
 
division
 

suppose

 

central

 
perplexed
 

dividing

 
considerably

BOARDS

 
method