FREE BOOKS

Author's List




PREV.   NEXT  
|<   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119  
120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   >>   >|  
20, and, on the other hand movements in the rhythm of 200 almost as accurate as those of 140 to the minute. Thus we have a lower limit below which decrease of rapidity does not increase the accuracy any further, and an upper limit beyond which a further increase of rapidity brings no additional deterioration. The mistakes of the unskilled left hand increase still more rapidly than the number of movements. If the eyes are closed, the rapid movements are usually too long and the slow ones too short. An investigation in the Harvard laboratory varied this problem in a direction which brings it still nearer to technical conditions of industry. Our central question was whether the greatest exactitude of rhythmical movement is secured at the same rapidity for different muscle groups.[36] We studied especially rhythmical movements of hand, foot, arm, and head, and studied them, moreover, under various conditions of resistance. The result from 340,000 measured movements was the demonstration that every muscle group has its own optimum of rapidity for the greatest possible accuracy and that the complexity of the movement and the resistance which it finds has most significant influence on the exactitude of the rhythmical achievement. If we abstract at first from the fluctuations around the average value of a particular group of movements and consider only this average itself in its relation to the starting movement which it is meant to imitate, we find characteristic tendencies toward enlargement or reduction dependent upon the rapidity. The right foot, for instance, remained nearest to the original movement at a rapidity of 80 motions in the minute, while the head did the same at about 20. For a hand movement of 14 centimeters, the most favorable rapidity was 120 repetitions in the minute, while for a hand movement of 1 centimeter the average remained nearest to the standard at about 40 repetitions. The mean variation from time average is the smallest for the left foot at 20 to 30 movements, for the right at 160 to 180, for the head at 40, for the larger hand movement at 180, and so on. Investigations of this kind have so far not affected industrial life in the least, but it seems hardly doubtful that a systematic study of the movements necessary for economic work will have to pass through such strictly experimental phases. The essential point, however, will be for the managers of the industrial concerns and the psychological
PREV.   NEXT  
|<   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119  
120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   >>   >|  



Top keywords:

movements

 
movement
 

rapidity

 

average

 

increase

 

rhythmical

 
minute
 
industrial
 

nearest

 
studied

remained

 

resistance

 

greatest

 

accuracy

 

exactitude

 

muscle

 

brings

 

conditions

 
repetitions
 

motions


imitate

 

relation

 

starting

 

characteristic

 
tendencies
 

instance

 
original
 

dependent

 

reduction

 
enlargement

economic

 

doubtful

 

systematic

 

strictly

 

managers

 

concerns

 
psychological
 

experimental

 

phases

 

essential


standard

 

variation

 

centimeter

 

centimeters

 
favorable
 
smallest
 

affected

 

larger

 
Investigations
 

number