FREE BOOKS

Author's List




PREV.   NEXT  
|<   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   >>  
planet is moving. These rules provide the methods for estimating all the moments of momentum, so far as the revolutions in our system are concerned. For the rotations somewhat more elaborate processes are required. Let us think of a sphere rotating round a fixed axis. Every particle of that sphere will of course describe a circle around the axis, and all these circles will lie in parallel planes. We may for our present purpose regard each atom of the body as a little planet revolving in a circular orbit, and therefore the moment of momentum of the entire sphere will be found by simply adding together the moments of momentum of all the different atoms of which the sphere is composed. To perform this addition the use of an elaborate mathematical method is required. I do not propose to enter into the matter any further, except to say that the total moment of momentum is the product of two factors--one the angular velocity with which the sphere is turning round, while the other involves the sphere's mass and dimensions. To illustrate the principles of the computation we shall take one or two examples. Suppose that two circles be drawn, one of which is double the diameter of the other. Let two planets be taken of equal mass, and one of these be put to revolve in one circle, and the other to revolve in the other circle, in such a way that the periods of both revolutions shall be equal. It is required to find the moments of momentum in the two cases. In the larger of the two circles it is plain that the planet must be moving twice as rapidly as in the smaller, therefore its momentum is twice as great; and as the radius is also double, it follows that the moment of momentum in the large orbit will be four times that in the small orbit. We thus see that the moment of momentum increases in the proportion of the squares of the radii. If, however, the two planets were revolving about the same sun, one of these orbits being double the other, the periodic times could not be equal, for Kepler's law tells us that the square of the periodic time is proportional to the cube of the mean distance. Suppose, then, that the distance of the first planet is 1, and that of the second planet is 2, the cubes of those numbers are 1 and 8, and therefore the periodic times of the two bodies will be as 1 to the square root of 8. We can thus see that the velocity of the outer body must be less than that of the inner one, for while the length of the
PREV.   NEXT  
|<   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   >>  



Top keywords:

momentum

 

sphere

 

planet

 

moment

 

required

 

periodic

 

circles

 

circle

 

moments

 

double


Suppose

 

planets

 
revolve
 

moving

 

revolving

 
square
 

distance

 

velocity

 

elaborate

 
revolutions

rapidly

 

smaller

 

radius

 

periods

 
diameter
 

larger

 

numbers

 
bodies
 

length

 

proportional


squares

 

proportion

 
increases
 

Kepler

 

orbits

 

planes

 

present

 
parallel
 
describe
 

purpose


regard

 

entire

 

circular

 

particle

 

system

 

estimating

 

methods

 
provide
 

concerned

 

rotating