FREE BOOKS

Author's List




PREV.   NEXT  
|<   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  
49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>   >|  
pointed out in these large angles is disregarded. The following table will show, by comparison of the versed sines of very small angles, the deflection in a given circle varying as the square of the speed, when we penetrate to them, so nearly that the error is not disclosed at the fifteenth place of decimals. The versed sine of 1" is 0.000,000,000,011,752 " " " " 2" is 0.000,000,000,047,008 " " " " 3" is 0.000,000,000,105,768 " " " " 4" is 0.000,000,000,188,032 " " " " 5" is 0.000,000,000,293,805 " " " " 6" is 0.000,000,000,423,072 " " " " 7" is 0.000,000,000,575,848 " " " " 8" is 0.000,000,000,752,128 " " " " 9" is 0.000,000,000,951,912 " " " " 10" is 0.000,000,001,175,222 " " " " 100" is 0.000,000,117,522,250 You observe the deflection for 10" of arc is 100 times as great, and for 100" of arc is 10,000 times as great as it is for 1" of arc. So far as is shown by the 15th place of decimals, the versed sine varies as the square of the angle; or, in a given circle, the deflection, and so the centrifugal force, of a revolving body varies as the square of the speed. The reason for the third law is equally apparent on inspection of Fig. 2. It is obvious, that in the case of bodies making the same number of revolutions in different circles, the deflection must vary directly as the diameter of the circle, because for any given angle the versed sine varies directly as the radius. Thus radius O A' is twice radius O A, and so the versed sine of the arc A' B' is twice the versed sine of the arc A B. Here, while the angular velocity is the same, the actual velocity is doubled by increase in the diameter of the circle, and so the deflection is doubled. This exhibits the general law, that with a given angular velocity the centrifugal force varies directly as the radius or diameter of the circle. We come now to the reason for the fourth law, that, with a given actual velocity, the centrifugal force varies _inversely_ as the diameter of the circle. If any of you ever revolved a weight at the end of a cord with some velocity, and let the cord wind up, suppose around your hand, without doing anything to accelerate the motion, then, while the circle of revolution was growing smaller, the actual velocity continuing nearly uniform, you have felt the continually increasing stres
PREV.   NEXT  
|<   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  
49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>   >|  



Top keywords:

circle

 
versed
 
velocity
 

deflection

 
varies
 
diameter
 
radius
 

directly

 

actual

 

centrifugal


square
 
reason
 

angular

 
doubled
 
angles
 

decimals

 
general
 

increase

 

exhibits

 

circles


revolutions

 

number

 

pointed

 

revolution

 

growing

 

motion

 

accelerate

 
smaller
 
continuing
 

increasing


continually

 

uniform

 
revolved
 

weight

 

inversely

 

fourth

 

suppose

 

apparent

 

disclosed

 
fifteenth

disregarded

 

equally

 

revolving

 

varying

 
comparison
 

penetrate

 

bodies

 

obvious

 

inspection

 

observe