cally all kinds of conversion except
for converting L.M.T. into L.S.T. You could do it by the formula
L.M.T. + W.Lo. = G.M.T. + (.).R.A. + (+).C.P. = G.S.T. - W.Lo. = L.S.T.
- E.Lo. + E.Lo.
But that involves too many operations.
A shorter way, though not so simple perhaps, is as follows: L.M.T. +
Reduction page 2 N.A. for time after local mean noon + (.).R.A. of
Greenwich mean noon +- Reduction page 2 N.A. for Lo. in T. (W+, E-) =
L.S.T.
Note to Instructor:
Explain this formula by turning to page 107 N.A. and work it out by the
formula L.M.T. + Lo. in T (W) = G.M.T. + (.).R.A. + (+).C.P. = G.S.T. -
Lo. in T (W) = L.S.T. Example:
L.M.T. 10h--40m--30s
Lo. in T 4 --56 W +
-------------
G.M.T. 15 --36 --30
(.).R.A. 5 --11 --10
(+).C.P. -- 2 --34
-------------
G.S.T. 20 --50 --14
Lo. W - 4 --56
-------------
L.S.T. 15h--54m--14s
Now Bowditch gets this L.S.T. in still another way. Turn to page 110,
Article 290. There the formula used is L.M.T. + (.).R.A. + (+).C.P. =
L.S.T, and in order to get the correct (.).R.A. and (+).C.P. the G.M.T.
has to be secured by the formula
L.M.T. + W.Lo. = G.M.T.
- E.Lo.
Let us work this same example in Bowditch by the other two methods.
First by the formula
L.M.T. + W.Lo. = G.M.T. + (.).R.A. + (+).C.P. = G.S.T. - W.Lo. = L.S.T.
- E.Lo. + E.Lo.
L.M.T. 22d-- 2h--00m--00s
+ W. Lo. 5 --25
----------------------
G.M.T. 22d-- 7h--25m--00s
(.).R.A. 1 --57 --59
(+).C.P. 1 --13
----------------------
G.S.T. 22d-- 9h--24m--12s
- W. Lo. 5 --25
----------------------
L.S.T. 22d-- 3h--59m--12s
The small difference between this answer and that of Bowditch's is that
the (.).R.A. for 1916 is slightly different from that of 1919. Bowditch
used the 1916 Almanac, whereas we are working from the 1919 Almanac. Now
turn to page 107 of the N.A. and let us work the same example in
Bowditch by the method used here:
L.M.T. 2h - 00m - 00s
Red. for 2h 0 - 20
|