FREE BOOKS

Author's List




PREV.   NEXT  
|<   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51  
52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   >>   >|  
ectly to the water outflow pipe, R. Before the aperture of the pipe is a lever, with a disk on one arm, on to which the issuing water impinges, thereby keeping the lever in the position indicated by the dotted lines. The effect of this is to break the platinum contact at C, and so interrupt the circuit of an alarm-bell placed in any suitable position. Suppose the water ceases to flow; the spring, F, comes into play, contact is made at C, and the bell continues to ring till some one comes to stop it. It is almost needless to remark that the disk, D, and the pin, E, are composed of insulating material, such as vulcanite.--_Jour. Gas Lighting._ * * * * * SOLDERING AND REPAIRING PLATINUM VESSELS IN THE LABORATORY. By J.W. PRATT, F.C.S. It frequently happens in the laboratory that platinum vessels, after long-continued use, begin to show signs of wear, and become perforated with minute pinholes. When they have reached this stage, they are usually accounted of no further utility, and are disposed of as scrap; not that it is impossible to repair them--for with fine gold wire and an oxyhydrogen jet this is easily feasible--but that the proper appliances and skill are not in possession of all. Irrespective of the manipulation of the hydrogen jet, it is rather difficult without long practice to hold the end of the fine wire precisely over the aperture and to keep it in position. It occurred to me that, if the gold in a finely divided condition could be placed in very intimate contact with the platinum, judging from the fusibility of gold-platinum alloys, union could be effected at a lower temperature over the ordinary gas blowpipe. I tried the experiment, and found the supposition correct. The substance I used was auric chloride, AuCl_{3}, which, as is well known, splits up on heating, first into aurous chloride, and at a higher temperature gives off all its chlorine and leaves metallic gold. Operating on a perforated platinum basin, in the first instance, I placed a few milligrammes of the aurous chloride from a 15 grain tube precisely over the perforation, and then gently heated to about 200 deg. C. till the salt melted and ran through the holes. A little further heating caused the reduced gold to solidify on each side of the basin. The blowpipe was now brought to bear on the bottom of the dish, right over the particular spots it was wished to solder, and in a few moments, at a yell
PREV.   NEXT  
|<   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51  
52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   >>   >|  



Top keywords:

platinum

 

position

 

chloride

 

contact

 

perforated

 

temperature

 

blowpipe

 

heating

 

aurous

 

precisely


aperture

 

supposition

 

experiment

 

Before

 

correct

 

splits

 

substance

 

finely

 
divided
 

condition


occurred

 
keeping
 

impinges

 

issuing

 

effected

 

higher

 

alloys

 

fusibility

 

intimate

 
judging

ordinary
 

solidify

 

reduced

 

caused

 
brought
 
wished
 
solder
 

moments

 
bottom
 

melted


outflow

 

instance

 

milligrammes

 

Operating

 

metallic

 

chlorine

 

leaves

 

heated

 

gently

 

perforation