FREE BOOKS

Author's List




PREV.   NEXT  
|<   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36  
37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   >>   >|  
the rim by the number of its revolutions per minute, and square the product for a divisor; divide the number of actual horse power of the engine by the number of strokes the piston makes per minute, multiply the quotient by the constant number 2,760,000, and divide the product by the divisor found as above; the quotient is the requisite quantity of cast iron in cubic feet to form the fly-wheel rim. 23. _Q._--What is Boulton and Watt's rule for finding the dimensions of the fly-wheel? _A._--Boulton and Watt's rule for finding the dimensions of the fly-wheel is as follows:--Multiply 44,000 times the length of the stroke in feet by the square of the diameter of the cylinder in inches, and divide the product by the square of the number of revolutions per minute multiplied by the cube of the diameter of the fly-wheel in feet. The resulting number will be the sectional area of the rim of the fly-wheel in square inches. CENTRAL FORCES. 24. _Q._--What do you understand by centrifugal and centripetal forces? _A._--By centrifugal force, I understand the force with which a revolving body tends to fly from the centre; and by centripetal force, I understand any force which draws it to the centre, or counteracts the centrifugal tendency. In the conical pendulum, or steam engine governor, which consists of two metal balls suspended on rods hung from the end of a vertical revolving shaft, the centrifugal force is manifested by the divergence of the balls, when the shaft is put into revolution; and the centripetal force, which in this instance is gravity, predominates so soon as the velocity is arrested; for the arms then collapse and hang by the side of the shaft. 25. _Q._--What measures are there of the centrifugal force of bodies revolving in a circle? _A._--The centrifugal force of bodies revolving in a circle increases as the diameter of the circle, if the number of revolutions remain the same. If there be two fly-wheels of the same weight, and making the same number of revolutions per minute, but the diameter of one be double that of the other, the larger will have double the amount of centrifugal force. The centrifugal force of the _same wheel_, however, increases as the square of the velocity; so that if the velocity of a fly-wheel be doubled, it will have four times the amount of centrifugal force. 26. _Q._--Can you give a rule for determining the centrifugal force of a body of a given weight moving with a g
PREV.   NEXT  
|<   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36  
37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   >>   >|  



Top keywords:

centrifugal

 

number

 

square

 
diameter
 
revolutions
 

minute

 

revolving

 
velocity
 

circle

 

centripetal


understand

 

product

 

divide

 
increases
 

inches

 

quotient

 

bodies

 
double
 

engine

 
centre

divisor

 
weight
 

amount

 

finding

 
dimensions
 

Boulton

 

arrested

 

divergence

 

manifested

 

vertical


gravity

 

instance

 

revolution

 

predominates

 
doubled
 

wheels

 
remain
 
making
 
larger
 

determining


collapse

 

moving

 

measures

 
quantity
 

requisite

 

length

 

stroke

 
Multiply
 

strokes

 
actual