FREE BOOKS

Author's List




PREV.   NEXT  
|<   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195  
196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   >>   >|  
s of Edwardsian mesenteries were present and septa were formed in the intervals between them. [Illustration: FIG. 19.--Diagram of the arrangement of the septa in a Zaphrentid coral. m, Main septum; c, counter septum; t, t, alar septa.] Space forbids a discussion of the proposals to classify corals after the minute structure of their coralla, but it will suffice to say that it has been shown that the septa of all corals are built up of a number of curved bars called trabeculae, each of which is composed of a number of nodes. In many secondary corals (_Cyclolites, Thamnastraea_) the trabeculae are so far separate that the individual bars are easily recognizable, and each looks something like a bamboo owing to the thickening of the two ends of each node. The trabeculae are united together by these thickened internodes, and the result is a fenestrated septum, which in older septa may become solid and aporose by continual deposit of calcite in the fenestrae. Each node of a trabecula may be simple, i.e. have only one centre of calcification, or may be compound. The septa of modern perforate corals are shown to have a structure nearly identical with that of the secondary forms, but the trabeculae and their nodes are only apparent on microscopical examination. The aporose corals, too, have a practically identical structure, their compactness being due to the union of the trabeculae throughout their entire lengths instead of at intervals, as in the Perforata. Further, the trabeculae may be evenly spaced throughout the septum, or may be grouped together, and this feature is probably of value in estimating the affinities of corals. (For an account of coral formations see CORAL-REEFS.) In the present state of our knowledge the Zoantharia in which a primary cycle of six couples of mesenteries is (or may be inferred to be) completed by the addition of two pairs to the eight Edwardsian mesenteries, and succeeding cycles are formed in the exocoeles of the pre-existing mesenterial cycles, may be classed in an order ACTINIIDEA, and this may be divided into the suborders _Malacactiniae_, comprising the soft-bodied Actinians, such as _Actinia, Sagartia, Bunodes_, &c., and the _Scleractiniae_, comprising the corals. The Scleractiniae may best be divided into groups of families which appear to be most closely related to one another, but it should not be forgotten that there is great reason to believe that many if not most of the extinct
PREV.   NEXT  
|<   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195  
196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   >>   >|  



Top keywords:

corals

 

trabeculae

 
septum
 

structure

 
mesenteries
 

intervals

 

formed

 

present

 

divided

 

comprising


cycles

 
Edwardsian
 

aporose

 

secondary

 
number
 
Scleractiniae
 
identical
 

Further

 

feature

 
Perforata

Zoantharia
 

knowledge

 

formations

 

evenly

 
entire
 
grouped
 

lengths

 

estimating

 

affinities

 

spaced


account
 

groups

 

families

 

closely

 

Bunodes

 

Actinia

 

Sagartia

 

related

 

extinct

 
reason

forgotten

 
Actinians
 
bodied
 

addition

 

succeeding

 
completed
 

inferred

 
couples
 

exocoeles

 
suborders