FREE BOOKS

Author's List




PREV.   NEXT  
|<   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55  
56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   >>   >|  
ical element known, then, has a distinctive spectrum of its own when it is raised to incandescence, and this distinctive spectrum is as reliable a means of identification for the element as a human face is for its owner. Whether it is a substance glowing in the laboratory or in a remote star makes no difference to the spectroscope; if the light of any substance reaches it, that substance will be recognised and identified by the characteristic set of waves. The spectrum of a glowing mass of gas will consist in a number of bright lines of various colours, and at various intervals; corresponding to each kind of gas, there will be a peculiar and distinctive arrangement of bright lines. But if the light from such a mass of glowing gas be made to pass through a cool mass of the _same_ gas it will be found that dark lines replace the bright lines in the spectrum, the reason for this being that the cool gas absorbs the rays of light emitted by the hot gas. Experiments of this kind enable us to reach the important general statement that every gas, when cold, absorbs the same rays of light which it emits when hot. Crossing the solar spectrum are hundreds and hundreds of dark lines. These could not at first be explained, because this fact of discriminative absorption was not known. We understand now. The sun's white light comes from the photosphere, but between us and the photosphere there is, as we have seen, another solar envelope of relatively cooler vapours--the reversing layer. Each constituent element in this outer envelope stops its own kind of light, that is, the kind of light made by incandescent atoms of the same element in the photosphere. The "stoppages" register themselves in the solar spectrum as dark lines placed exactly where the corresponding bright lines would have been. The explanation once attained, dark lines became as significant as bright lines. The secret of the sun's composition was out. We have found practically every element in the sun that we know to be in the earth. We have identified an element in the sun before we were able to isolate it on the earth. We have been able even to point to the coolest places on the sun, the centres of sun-spots, where alone the temperature seems to have fallen sufficiently low to allow chemical compounds to form. It is thus we have been able to determine what the stars, comets, or nebulae are made of. A Unique Discovery In 1868 Sir Norman Lockyer detected a
PREV.   NEXT  
|<   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55  
56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   >>   >|  



Top keywords:
element
 

spectrum

 

bright

 

glowing

 

photosphere

 

distinctive

 
substance
 

envelope

 

hundreds

 

absorbs


identified

 

Discovery

 

Unique

 

register

 
explanation
 

comets

 

detected

 

nebulae

 

stoppages

 

reversing


constituent
 

Norman

 

vapours

 
attained
 
incandescent
 

Lockyer

 

fallen

 

isolate

 

sufficiently

 

cooler


centres

 

places

 

temperature

 

coolest

 

chemical

 

practically

 

composition

 
secret
 

significant

 

determine


compounds

 

recognised

 
characteristic
 
reaches
 

difference

 

spectroscope

 
consist
 

peculiar

 
arrangement
 

intervals