FREE BOOKS

Author's List




PREV.   NEXT  
|<   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42  
43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   >>   >|  
s, as during the last flight an explosion took place and both Woelfert and an aeronaut named Knabe, who was accompanying him, were killed. In 1906, Major von Parseval experimented, in Berlin, with a non-rigid type of airship. His first ship had a volume of 65,200 cubic feet, but owing to his system of suspensions, the car hung 27 feet 6 inches below the envelope. A Daimler engine was used, driving a four-bladed propeller. Owing to the great overall height of this ship, experiments were made to determine a system of rigging, enabling the car to be slung closer to the envelope, and in later types the elliptical rigging girdle was adopted. His later ships were of large dimensions and proved very satisfactory. About the same time Major Gross also built airships for the German aeronautical battalion. It is, however, the rigid airship that has made Germany famous, and we must now glance at the evolution of these ships with which we became so familiar during the war. The first rigid airship bearing any resemblance to those of the present day was designed by David Schwartz, and was built in St. Petersburg in 1893. It was composed of aluminium plates riveted to an aluminium framework. On inflation, the frame-work collapsed and the ship was unusable. In 1895 he designed a second rigid airship, which was built in Berlin by Messrs. Weisspfennig and Watzesch. The hull framework was composed of aluminium and was 155 feet long, elliptical in cross section, giving a volume of 130,500 cubic feet. It was pointed in front and rounded off aft. The car, also constructed of the same material, was rigidly attached to the hull by a lattice framework, and the whole hull structure was covered in with aluminium sheeting. A 12 horse-power Daimler benzine motor was installed in the car, driving through the medium of a belt twin aluminium screw propellers; no rudders were supplied, the steering being arranged by means of a steering screw placed centrally to the ship above the top of the car. Inflation took place at the end of 1897 by a method of pressing out air-filled fabric cells which were previously introduced into the hull. This operation took three and a half hours. On the day of the first flight trials there was a fresh wind of about 17 miles per hour. The airship ascended into the air, but, apparently, could make little headway against the wind. During the trip the driving-belt became disengaged from the propellers and
PREV.   NEXT  
|<   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42  
43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   >>   >|  



Top keywords:
airship
 

aluminium

 

framework

 

driving

 

elliptical

 

rigging

 
envelope
 

Daimler

 

steering

 

propellers


flight

 

composed

 

designed

 

system

 
Berlin
 

volume

 

covered

 

structure

 

sheeting

 

installed


rudders
 

supplied

 

killed

 
medium
 
lattice
 

benzine

 

rigidly

 

section

 

Watzesch

 

Messrs


Weisspfennig

 

giving

 

constructed

 

material

 

experimented

 

rounded

 

pointed

 
attached
 

trials

 

ascended


apparently

 

During

 
disengaged
 
headway
 

operation

 

Inflation

 
centrally
 

arranged

 
method
 

pressing