FREE BOOKS

Author's List




PREV.   NEXT  
|<   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155  
156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   >>   >|  
tested. The late remarkable experiments in England--firing 130-and 150-pound Whitworth steel shells, holding 3 to 5 pounds of powder, from a 7-inch Armstrong gun, with 23 to 27 pounds of powder, through the Warrior target, and bursting them in and beyond the backing--certainly show that large calibres are not indispensable in fighting iron-clads. A destructive blow requires a _heavy charge of powder_; which brings us to _The Strain and Structure of Guns, and Cartridges_. The problem is, 1st, to construct a gun which will stand the heaviest charge; 2d, to reduce the strain on the gun without reducing the velocity of the shot. It is probable that powder-gas, from the excessive suddenness of its generation, exerts a percussive as well as a statical pressure, thus requiring great elasticity and a certain degree of hardness in the gun-metal, as well as high tensile strength. Cast-iron and bronze are obviously inadequate. Solid wrought-iron forgings are not all that could be desired in respect of elasticity and hardness, but their chief defect is want of homogeneity, due to the crude process of puddling, and to their numerous and indispensable welds. Low cast-steel, besides being elastic, hard, tenacious, and homogeneous, has the crowning advantage of being produced in large masses without flaw or weld. Krupp, of Prussia, casts ingots of above 20 tons' weight, and has forged a cast-steel cannon of 9 inches bore. One of these ingots, in the Great Exhibition, measured 44 inches in diameter, and was uniform and fine-grained throughout. His great success is chiefly due to the use of manganesian iron, (which, however, is inferior to the Franklinite of New Jersey, because it contains no zinc,) and to skill in heating the metal, and to the use of heavy hammers. His heaviest hammer weighs 40 tons, falls 12 feet, and strikes a blow which does not draw the surface like a light hammer, but compresses the whole mass to the core. Krupp is now introducing the Bessemer process for producing ingots of any size at about the cost of wrought-iron. These and other makes of low-steel have endured extraordinary tests in the form of small guns and other structures subject to concussion and strain; and both the theory and all the evidence that we have promise its superiority for gun-metal. But another element of resistance is required in guns with thick walls. The explosion of the powder is so instantaneous that the exterior parts of the metal do
PREV.   NEXT  
|<   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155  
156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   >>   >|  



Top keywords:

powder

 
ingots
 

strain

 

elasticity

 

charge

 

heaviest

 

hardness

 

hammer

 

inches

 

process


wrought

 

indispensable

 

pounds

 

Jersey

 

heating

 

weighs

 

strikes

 

surface

 

England

 

Franklinite


hammers

 

Exhibition

 

measured

 

forged

 

cannon

 

diameter

 

chiefly

 

firing

 

manganesian

 

success


uniform

 

grained

 
inferior
 
compresses
 

evidence

 

promise

 

superiority

 

theory

 

tested

 

structures


subject

 

concussion

 

element

 

instantaneous

 

exterior

 

explosion

 

resistance

 

required

 

Bessemer

 
experiments