FREE BOOKS

Author's List




PREV.   NEXT  
|<   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64  
65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   >>   >|  
ly motion or its counterpart invisible to us."(1) The fact that the stars show no parallax had been regarded as an important argument against the motion of the earth, and it was still so considered by the opponents of the system of Copernicus. It had, indeed, been necessary for Aristarchus to explain the fact as due to the extreme distance of the stars; a perfectly correct explanation, but one that implies distances that are altogether inconceivable. It remained for nineteenth-century astronomers to show, with the aid of instruments of greater precision, that certain of the stars have a parallax. But long before this demonstration had been brought forward, the system of Copernicus had been accepted as a part of common knowledge. While Copernicus postulated a cosmical scheme that was correct as to its main features, he did not altogether break away from certain defects of the Ptolemaic hypothesis. Indeed, he seems to have retained as much of this as practicable, in deference to the prejudice of his time. Thus he records the planetary orbits as circular, and explains their eccentricities by resorting to the theory of epicycles, quite after the Ptolemaic method. But now, of course, a much more simple mechanism sufficed to explain the planetary motions, since the orbits were correctly referred to the central sun and not to the earth. Needless to say, the revolutionary conception of Copernicus did not meet with immediate acceptance. A number of prominent astronomers, however, took it up almost at once, among these being Rhaeticus, who wrote a commentary on the evolutions; Erasmus Reinhold, the author of the Prutenic tables; Rothmann, astronomer to the Landgrave of Hesse, and Maestlin, the instructor of Kepler. The Prutenic tables, just referred to, so called because of their Prussian origin, were considered an improvement on the tables of Copernicus, and were highly esteemed by the astronomers of the time. The commentary of Rhaeticus gives us the interesting information that it was the observation of the orbit of Mars and of the very great difference between his apparent diameters at different times which first led Copernicus to conceive the heliocentric idea. Of Reinhold it is recorded that he considered the orbit of Mercury elliptical, and that he advocated a theory of the moon, according to which her epicycle revolved on an elliptical orbit, thus in a measure anticipating one of the great discoveries of Kepler to wh
PREV.   NEXT  
|<   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64  
65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   >>   >|  



Top keywords:
Copernicus
 
astronomers
 

tables

 

considered

 

commentary

 

orbits

 

Rhaeticus

 

planetary

 

altogether

 
Prutenic

Reinhold
 

Ptolemaic

 

Kepler

 

correct

 

explain

 
referred
 

system

 

elliptical

 
theory
 

motion


parallax

 

Erasmus

 

author

 

conception

 
revolutionary
 

Landgrave

 

astronomer

 

Rothmann

 

prominent

 

acceptance


number
 
evolutions
 
recorded
 

Mercury

 

heliocentric

 
conceive
 

advocated

 

measure

 

anticipating

 
discoveries

revolved

 
epicycle
 

origin

 

improvement

 

highly

 
esteemed
 
Prussian
 
instructor
 

called

 
interesting