FREE BOOKS

Author's List




PREV.   NEXT  
|<   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90  
91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   >>   >|  
t the Yerkes Observatory of the University of Chicago, Williams Bay, Wisconsin, U.S.A. It was erected in 1896-7, and is the largest refracting telescope in the world. Diameter of object-glass, 40 inches; length of telescope, about 60 feet. The object-glass was made by the firm of Alvan Clark and Sons, of Cambridge, Massachusetts; the other portions of the instrument by the Warner and Swasey Co., of Cleveland, Ohio. (Page 117)] In connection with telescopes certain devices have from time to time been introduced, but these merely aim at the _convenience_ of the observer and do not supplant the broad principles upon which are based the various types of instrument above described. Such, for instance, are the "Siderostat," and another form of it called the "Coelostat," in which a plane mirror is made to revolve in a certain manner, so as to reflect those portions of the sky which are to be observed, into the tube of a telescope kept fixed. Such too are the "Equatorial Coude" of the late M. Loewy, Director of the Paris Observatory, and the "Sheepshanks Telescope" of the Observatory of Cambridge, in which a telescope is separated into two portions, the eye-piece portion being fixed upon a downward slant, and the object-glass portion jointed to it at an angle and pointed up at the sky. In these two instruments (which, by the way, differ materially) an arrangement of slanting mirrors in the tubes directs the journey of the rays of light from the object-glass to the eye-piece. The observer can thus sit at the eye-end of his telescope in the warmth and comfort of his room, and observe the stars in the same unconstrained manner as if he were merely looking down into a microscope. Needless to say, devices such as these are subject to the drawback that the mirrors employed sap a certain proportion of the rays of light. It will be remembered that we made allusion to loss of light in this way, when pointing out the advantage in light grasp of the Herschelian form of telescope, where only _one_ reflection takes place, over the Newtonian in which there are _two_. It is an interesting question as to whether telescopes can be made much larger. The American astronomer, Professor G.E. Hale, concludes that the limit of refractors is about five feet in diameter, but he thinks that reflectors as large as nine feet in diameter might now be made. As regards refractors there are several strong reasons against augmenting their proportions.
PREV.   NEXT  
|<   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90  
91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   >>   >|  



Top keywords:

telescope

 

object

 
portions
 

Observatory

 

telescopes

 

manner

 

observer

 
devices
 

diameter

 

mirrors


portion

 

Cambridge

 

instrument

 
refractors
 
microscope
 

reasons

 

drawback

 
strong
 

slanting

 

Needless


subject
 

directs

 
observe
 

comfort

 

warmth

 

augmenting

 

journey

 

proportions

 

unconstrained

 
larger

question

 

interesting

 

Newtonian

 
American
 

astronomer

 
thinks
 
concludes
 

reflectors

 

Professor

 
reflection

allusion

 
remembered
 
proportion
 

arrangement

 

Herschelian

 

pointing

 

advantage

 
employed
 
Warner
 

Swasey