FREE BOOKS

Author's List




PREV.   NEXT  
|<   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213  
214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   >>   >|  
of iron; but in whatever way the iron has been excited or rubbed, it settles in the declination instrument precisely along the plane of the horizon, if it were properly balanced before. Now this occurs thus because, when the magnetick body is at an equal distance from either pole, it dips toward neither by its own versatory nature, but remains evenly directed to the level of the horizon, as if it were resting on a pin or floating free and unhindered on water. But when the magnetick substance is at some latitude away from the aequator, or when either pole of the earth is raised (I do not say raised above the visible horizon, as the commonly imagined pole of the revolving universe in the sky, but above the horizon or its centre, or its proper diameter, aequidistant from the plane of the visible horizon, which is the true elevation of the terrestrial pole), {188} [Illustration] then declination is apparent, and the iron inclines toward the body of the earth in its own meridian. Let A B, for example, be the visible horizon of a place; C D the horizontal through the earth, dividing it into equal parts; E F the axis of the earth; G the position of the place. It is manifest that the boreal pole E is elevated above the point C by as much as G is distant from the aequator. Wherefore, since at E the magnetick needle stands perpendicularly in its proper turning (as we have often shown before), so now at G there is a certain tendency to turn in proportion to the latitude (the magnetick dipping below the plane of the horizon), and the magnetick body intersects the horizon at unequal angles, and exhibits a declination below the horizon. For the same reason, if the declinatory needle be placed at G, its southern end, the one namely which is directed toward the North, dips below the plane of the visible horizon A B. And so there is the greatest difference between a right sphere[232] and a polar or parallel sphere, in which the pole is at the very Zenith. For in a right sphere the needle is parallel to the plane of the horizon; but when the coelestial pole is vertically overhead, or when the pole of the earth is itself the place of the region, then the needle is perpendicular to the horizon. This is shown by a round stone. Let a small dipping-needle, of two digits length (rubbed with a magnet), be hung in the air like a balance, and let the stone be carefully placed under it; and first let the terrella be at right angles, as in a right sp
PREV.   NEXT  
|<   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213  
214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   >>   >|  



Top keywords:

horizon

 

needle

 

magnetick

 

visible

 

sphere

 

declination

 

dipping

 
parallel
 

aequator

 

proper


rubbed
 
raised
 

angles

 

latitude

 
directed
 

distant

 
exhibits
 
stands
 

tendency

 

unequal


intersects

 

turning

 
Wherefore
 

perpendicularly

 

reason

 

proportion

 
length
 

magnet

 

digits

 
terrella

carefully

 

balance

 

perpendicular

 

region

 

greatest

 
difference
 
southern
 

vertically

 

overhead

 

coelestial


Zenith

 

declinatory

 

inclines

 

evenly

 

resting

 

remains

 
nature
 

versatory

 

floating

 
substance