ey appointed at Oxford, but continues to work at Wansted.]
In 1721 Bradley was appointed to the Savilian Professorship of Astronomy
at Oxford, vacant by the death of Dr. John Keill. Once it became clear
that there was no chance of securing his uncle for this position, Bradley
himself was supported enthusiastically by all those whose support was
worth having, especially by the Earl of Macclesfield, who was then Lord
Chancellor; by Martin Foulkes, who was afterwards the President of the
Royal Society; and by Sir Isaac Newton himself. He was accordingly elected
on October 31, 1721, and forthwith resigned his livings. His resignation
of the livings was necessitated by a definite statute of the University
relating to the Professorship, and not by the existence of any very
onerous duties attaching to it; indeed such duties seem to have been
conspicuously absent, and after Bradley's election he passed more time
than ever with his uncle in Wansted, making the astronomical observations
which both loved; for there was not the vestige of an observatory in
Oxford. His uncle's death in 1724 interrupted the continuity of these
joint observations, and by an odd accident prepared the way for Bradley's
great discovery. He was fain to seek elsewhere that companionship in his
work which had become so essential to him, and his new friend gave a new
bent to his observations.
[Sidenote: Samuel Molyneux.]
[Sidenote: Attempts to find stellar parallax.]
Samuel Molyneux was a gentleman of fortune much attached to science, and
particularly to astronomy, who was living about this time at Kew. He was
one of the few, moreover, who are not content merely to amuse themselves
with a telescope, but had the ambition to do some real earnest work, and
the courage to choose a problem which had baffled the human race for more
than a century. The theory of Copernicus, that the earth moved round the
sun, necessitated a corresponding apparent change in the places of the
stars, one relatively to another; and it was a standing difficulty in the
way of accepting this theory that no such change could be detected. In the
old days before the telescope it was perhaps easy to understand that the
change might be too small to be noticed, but the telescope had made it
possible to measure changes of position at least a hundred times as small
as before, and still no "parallax," as the astronomical term goes, could
be found for the stars. The observations of Galileo, a
|