FREE BOOKS

Author's List




PREV.   NEXT  
|<   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113  
114   115   116   117   118   119   120   121   122   >>  
, purpurin, and the other colouring-matters of madder are hydroxyl derivatives of a compound derived from anthracene by the replacement of two atoms of hydrogen by two atoms of oxygen. These oxygen derivatives of benzenoid hydrocarbons form a special group of compounds known as quinones. Thus there is quinone itself, or benzoquinone, which is benzene with two atoms of oxygen replacing two atoms of hydrogen. There are also isomeric quinones of the naphthalene series known as naphthaquinones. A dihydroxyl derivative of one of the latter is in use under the somewhat misappropriate name of "alizarin black." With this exception no other quinone derivative is used in the colour industry till we come to the hydrocarbons of the anthracene oil. Phenanthrene forms a quinone which has been utilized as a source of colouring-matters, but these are comparatively unimportant. The quinone with which we are at present concerned is anthraquinone. The latter is prepared by oxidizing the anthracene--previously reduced by sublimation to the condition of a very finely-divided crystalline powder--with sulphuric acid and potassium dichromate. The quinone is purified, converted into a sulpho-acid, and the sodium salt of the latter on fusion with alkali gives alizarin, which is dihydroxy-anthraquinone. It is of interest to note that in this case a monosulpho-acid gives a dihydroxy-derivative. During the process of fusion potassium chlorate is added, by which means the yield of alizarin is considerably increased. In the original process of Graebe and Liebermann, dibromanthraquinone was fused with alkali; but this method was soon improved upon by the discovery of the sulpho-acid by Caro and Perkin in 1869, and from this period the manufacture of artificial alizarin became commercially successful. In addition to alizarin, other anthracene derivatives are of industrial importance. The purpurin, discovered among the colouring-matters of madder in 1826, is a trihydroxy-anthraquinone; it can be prepared by the oxidation of alizarin, as shown by De Lalande in 1874. Isomeric compounds known as "flavopurpurin" and "anthrapurpurin" are also made from the disulpho-acids of anthraquinone by fusion with alkali and potassium chlorate. These two disulpho-acids are obtained simultaneously with the monosulpho-acid by the action of fuming sulphuric acid on the quinone, and are separated by the fractional crystallization of their sodium salts from the monosulpho-
PREV.   NEXT  
|<   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113  
114   115   116   117   118   119   120   121   122   >>  



Top keywords:
quinone
 

alizarin

 
anthraquinone
 

anthracene

 
potassium
 

derivatives

 

derivative

 
colouring
 

matters

 

monosulpho


fusion
 

oxygen

 

alkali

 

hydrocarbons

 

chlorate

 
process
 

compounds

 
prepared
 
madder
 

dihydroxy


sulphuric

 

purpurin

 

sulpho

 

sodium

 

quinones

 

disulpho

 

hydrogen

 

Liebermann

 

improved

 

dibromanthraquinone


method
 

interest

 

During

 
increased
 

original

 

considerably

 

Graebe

 

commercially

 
flavopurpurin
 
anthrapurpurin

Isomeric

 

Lalande

 
obtained
 

simultaneously

 

crystallization

 

fractional

 

separated

 

action

 

fuming

 

oxidation