FREE BOOKS

Author's List




PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  
utual adhesion of the two constituent parts of the atmosphere for each other, and the elective attraction which unites the base of vital air with caloric; in consequence of these, when the calcination ends, or is at least carried as far as is possible, in a determinate quantity of atmospheric air, there still remains a portion of respirable air united to the mephitis, which the mercury cannot separate. I shall afterwards show, that, at least in our climate, the atmospheric air is composed of respirable and mephitic airs, in the proportion of 27 and 73; and I shall then discuss the causes of the uncertainty which still exists with respect to the exactness of that proportion. Since, during the calcination of mercury, air is decomposed, and the base of its respirable part is fixed and combined with the mercury, it follows, from the principles already established, that caloric and light must be disengaged during the process: But the two following causes prevent us from being sensible of this taking place: As the calcination lasts during several days, the disengagement of caloric and light, spread out in a considerable space of time, becomes extremely small for each particular moment of that time, so as not to be perceptible; and, in the next place, the operation being carried on by means of fire in a furnace, the heat produced by the calcination itself becomes confounded with that proceeding from the furnace. I might add the respirable part of the air, or rather its base, in entering into combination with the mercury, does not part with all the caloric which it contained, but still retains a part of it after forming the new compound; but the discussion of this point, and its proofs from experiment, do not belong to this part of our subject. It is, however, easy to render this disengagement of caloric and light evident to the senses, by causing the decomposition of air to take place in a more rapid manner. And for this purpose, iron is excellently adapted, as it possesses a much stronger affinity for the base of respirable air than mercury. The elegant experiment of Mr Ingenhouz, upon the combustion of iron, is well known. Take a piece of fine iron wire, twisted into a spiral, (BC, Plate IV. Fig. 17.) fix one of its extremities B into the cork A, adapted to the neck of the bottle DEFG, and fix to the other extremity of the wire C, a small morsel of tinder. Matters being thus prepared, fill the bottle DEFG with air deprive
PREV.   NEXT  
|<   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67  
68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   >>   >|  



Top keywords:

caloric

 

mercury

 

respirable

 

calcination

 

experiment

 

proportion

 
disengagement
 

carried

 

furnace

 
bottle

adapted

 

atmospheric

 

evident

 

render

 
decomposition
 

causing

 
senses
 

compound

 

contained

 

retains


forming
 

entering

 

combination

 

manner

 

subject

 
belong
 

discussion

 

proofs

 

combustion

 

extremities


extremity

 

prepared

 

deprive

 

Matters

 

morsel

 
tinder
 

spiral

 
affinity
 

elegant

 

stronger


purpose

 
excellently
 

possesses

 

Ingenhouz

 

twisted

 

spread

 
climate
 

composed

 
separate
 
united