FREE BOOKS

Author's List




PREV.   NEXT  
|<   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273  
274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   >>  
se a set of lines of two physical wires each, is not complicated, though it must be done with care and in accordance with a definite, foreknown plan. Transposing phantom circuits is less simple, however, as four wires per circuit have to be transposed, instead of two. [Illustration: Fig. 464. Transposition of Phantom Circuits] In Fig. 464, the general spacing of transposition sections is the usual one, 1,300 feet, of the _ABCB_ system widely in use. The pole circuit, on pins _5_ and _6_ of the upper arm, is transposed once each two miles. The pole circuit of the second arm transposes either once or twice a mile. But neither pole circuit differs in transposition from any other regular scheme except in the frequency of transposition. All the other wires of each arm, however, are so arranged that each wire on either side of the pole circuit moves from pin to pin at section-ends, till it has completed a cycle of changes over all four of the pins on its side. In doing so, each phantom circuit is transposed with proper regard to each of the other three on that twenty-wire line. The "new transposition" lettering in Fig. 464 is for the purpose of identifying the exact scheme of wiring each transposition pole. The complication of wiring at each transposition pole is increased by the adoption of phantom circuits. Maintenance of all the circuits is made more costly and less easy unless the work at points of transposition is done with care and skill. Phantom circuits, to be always successful, require that the physical circuits be balanced and kept so. _Transmission over Phantom Circuits._ Under proper conditions phantom circuits are better than physical circuits, and in this respect it may be noted that some long-distance operating companies instruct their operators always to give preference to phantom circuits, because of the better transmission over them. The use of phantom circuits is confined almost wholly to open-wire circuits; and while the capacity of the phantom circuit is somewhat greater than that of the physical circuit, its resistance is considerably smaller. In the actual wire the phantom loop is only half the resistance of either of the physical lines from which it is made, for it contains twice as much copper. The resistance of the repeating coils, however, is to be added. =Simplex.= Simplex telegraph circuits are made from metallic circuit telephone lines, as shown in Fig. 465. The principle is identical wi
PREV.   NEXT  
|<   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273  
274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   >>  



Top keywords:

circuits

 
circuit
 

phantom

 
transposition
 

physical

 

transposed

 

Phantom

 

resistance

 

proper

 

wiring


scheme

 

Simplex

 
Circuits
 

Transmission

 

capacity

 

telephone

 
conditions
 

metallic

 
respect
 

telegraph


balanced
 

identical

 

costly

 

principle

 

successful

 

require

 

points

 

Maintenance

 

transmission

 

greater


preference

 

actual

 

smaller

 
wholly
 
confined
 

operators

 

copper

 
repeating
 

distance

 

instruct


companies

 

operating

 

considerably

 

sections

 

general

 
spacing
 

system

 
widely
 

Transposition

 

Illustration