FREE BOOKS

Author's List




PREV.   NEXT  
|<   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121  
122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   >>   >|  
us cause a false ring on the called subscriber. This will not occur because both the relays _15_ and _17_ depend for their energization on the closure of the contacts of the relay _13_, and when this falls back the relay _17_ cannot again be energized even though the relay _15_ assumes its normal position. =Kellogg Trunk Circuits.= The provision for proper working of trunk circuits in connection with the two-wire multiple switchboards is not an altogether easy matter, owing particularly to the smaller number of wires available in the plug circuits. It has been worked out in a highly ingenious way, however, by the Kellogg Company, and a diagram of their incoming trunk circuit, together with the associated circuits involved in an inter-office connection, is shown in Fig. 377. [Illustration: Fig. 377. Inter-Office Connection--Kellogg System] This figure illustrates a connection from a regular two-wire multiple subscriber's line in one office, through an _A_-operator's cord circuit there, to the outgoing trunk jacks at that office, thence through the incoming trunk circuit at the other office to the regular two-wire multiple subscriber's line at that second office. The portion of this diagram to be particularly considered is that of the _B_-operator's cord circuit. The trunk circuit terminates in the multipled outgoing trunk jacks at the first office, the trunk extending between offices consisting, of course, of but two wires. We will first consider the control of the calling supervisory lamp in the _A_-operator's cord circuit, it being remembered that this control must be from the called subscriber's station. It will be noticed that the left-hand armature of the relay _1_ serves normally to bridge the winding of relay _2_ across the cord circuit around the condenser _3_. When, however, the relay _1_ pulls up, the coil of relay _4_ is substituted in this bridge connection across the trunk. The relay _2_ has a very high resistance winding--about 15,000 ohms--and this resistance is so great that the tip supervisory relay of the _A_-operator's cord will not pull up through it. As a result, when this relay is bridged across the trunk circuit, the tip relay on the calling side of the _A_-operator's cord circuit is de-energized, just as if the trunk circuit were open, and this results in the lighting of the _A_-operator's calling supervisory lamp. The winding of the relay _4_, however, is of low resistance--about 50 ohms--an
PREV.   NEXT  
|<   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121  
122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   >>   >|  



Top keywords:

circuit

 
operator
 
office
 

connection

 
subscriber
 
Kellogg
 
resistance
 

supervisory

 

winding

 

calling


multiple
 

circuits

 

called

 

control

 
energized
 
bridge
 

outgoing

 

incoming

 

regular

 
diagram

remembered
 

consisting

 

terminates

 

multipled

 
offices
 

extending

 

condenser

 
result
 

results

 
bridged

armature
 

serves

 

station

 

noticed

 

substituted

 
lighting
 

normal

 

position

 

assumes

 
Circuits

altogether

 

switchboards

 

working

 

provision

 
proper
 

relays

 

contacts

 
closure
 

depend

 

energization