FREE BOOKS

Author's List




PREV.   NEXT  
|<   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   >>  
rk to start on the 184-inch cyclotron in August 1940.[1] It was designed to accelerate atomic particles to an energy of 100 million electron volts (Mev), five times that possible with the 60-inch machine. [Illustration: Fig. 1. The electromagnet under construction during the period 1940 to 1942.] Before the new cyclotron could be finished World War II began. Construction on the cyclotron was therefore halted. However, because of interest in separating the isotopes of uranium by the electromagnetic method, work on the giant magnet continued at an even faster pace. This magnet would contain 3700 tons of steel in its yoke and pole pieces, and 300 tons of copper in its exciting coils (Fig. 1). By May 1942 the magnet was completed. During that summer it was used in a pilot plant to separate the first significant amounts of U^{235} ever obtained. The 184-inch magnet remained in use in a research and development program at Berkeley until the end of the war, supplying information to Oak Ridge, Tennessee, where a large separation plant had been erected. Construction on the rest of the cyclotron was resumed in 1945. By that time a new principle had been discovered which made it possible to obtain ion beams of much higher energy than originally hoped for. Yet a considerably lower accelerating voltage could be used. This important discovery was made independently by Dr. V. Veksler in Russia and by Dr. Edwin M. McMillan, present Director of the Lawrence Radiation Laboratory. Before attempting to discuss this principle, we should first review the operation of a conventional cyclotron. PRINCIPLE OF OPERATION OF A CONVENTIONAL CYCLOTRON [Illustration: Fig. 2. Basic parts of a cyclotron.] The main parts of a cyclotron are represented in Fig. 2. Charged particles (ions) are accelerated inside an evacuated tank. This is to prevent the beam from colliding with air molecules and being scattered. The vacuum tank is placed between the poles of an electromagnet, whose field bends the ion beam into a circular orbit. The operation begins when the ions are introduced into the region between two accelerating electrodes, or "dees."[2] Because the ions carry a positive electric charge, they are attracted toward that dee which is electrically negative at the moment. Were it not for the magnetic field, the ions would be accelerated in a straight line; instead they are deflected into a circular path back toward the dee gap. By th
PREV.   NEXT  
|<   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   >>  



Top keywords:
cyclotron
 

magnet

 

Construction

 
operation
 

circular

 
Before
 

principle

 

accelerated

 

energy

 

electromagnet


Illustration

 
particles
 

accelerating

 

OPERATION

 

CONVENTIONAL

 

CYCLOTRON

 

McMillan

 

Veksler

 

Russia

 
independently

voltage

 

important

 
discovery
 

present

 

Director

 

review

 

conventional

 
discuss
 

Lawrence

 
Radiation

Laboratory

 

attempting

 

PRINCIPLE

 

attracted

 
electrically
 

negative

 

moment

 
charge
 

electric

 

Because


positive

 
deflected
 

magnetic

 

straight

 

electrodes

 

molecules

 

scattered

 

colliding

 

Charged

 

inside