FREE BOOKS

Author's List




PREV.   NEXT  
|<   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221  
222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   >>   >|  
rated by some of the deposits at Bingham, Utah, and at Bisbee, Arizona. The primary deposition was of chalcopyrite and other copper sulphides, together with garnet, diopside, and other minerals known to have required high temperature in their formation. The ore fills fissures and replaces extensive masses of the limestone. It is likely to show a fairly sharp contact on the side toward the intrusive, and to grade off into the country rock on the other side with numerous embayments and irregularities. These deposits have been enriched by weathering in the same manner as indicated above for the porphyry coppers, but to highly varying degrees. In the Bisbee deposits large values were found in the weathered zone, and secondary sulphide enrichment below this zone is also important. In the Bingham camp, on the other hand, the weathered zone is insignificant and most of the ore beneath is primary. The weathering of the silicated limestone gangue results in great masses of clay which are characteristic features of the oxide zones of these deposits. =Copper deposits in schists.= Other copper deposits, as at Jerome, Arizona, in the Foothill and Shasta County districts of California, at Ducktown, Tennessee, etc., are irregular lenticular bodies in schists and other rocks, but all show relationship to igneous rocks. The Rio Tinto ores of Spain and Portugal, which belong in this group, have been referred to on page 108. In the Jerome or Verde district of central Arizona, folded pre-Cambrian greenstones and sediments were invaded by masses of quartz-porphyry, and after further deformation, rendering many of the rocks schistose, were intruded by an augite-diorite. Contact metamorphism along both the quartz-porphyry and the diorite contacts was practically lacking. The ore bodies were formed as irregular pipe-like replacements of the schists, being localized in one case by a steeply pitching inverted trough of impervious diorite, and in other cases by shear zones which favored vigorous circulation. A later series of small diorite or andesite dikes cut the ore bodies. The primary ores consist of pyrite, chalcopyrite, and other sulphides, with large amounts of jaspery quartz and some calcite and dolomite. They were clearly formed by replacement of the schists particle by particle, as shown by the frequent preservation of the schist structure in a banding of the sulphide minerals, the residual shreds of unreplaced schist material in the
PREV.   NEXT  
|<   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221  
222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   >>   >|  



Top keywords:
deposits
 

diorite

 

schists

 

masses

 

bodies

 

primary

 
Arizona
 
quartz
 

porphyry

 
weathering

limestone

 

Jerome

 
irregular
 

weathered

 

sulphides

 

copper

 

formed

 

chalcopyrite

 
minerals
 
schist

Bingham

 

sulphide

 
Bisbee
 
particle
 

intruded

 

Contact

 

contacts

 
metamorphism
 

schistose

 

augite


folded

 

district

 

central

 

referred

 
Portugal
 

belong

 
practically
 

deformation

 
rendering
 

invaded


Cambrian

 

greenstones

 

sediments

 
impervious
 

jaspery

 

calcite

 

dolomite

 

amounts

 

pyrite

 
consist