FREE BOOKS

Author's List




PREV.   NEXT  
|<   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96  
97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>  
hic signal came to him, but the electric impulse, through his rude apparatus, faded out at a distance of fifty feet. In 1830 Prof. Joseph Henry, of this country, constructed a line of wire, one and a half miles in length, and sent a current of electricity through it, ringing a bell at the farther end. The following year Professor Faraday discovered magnetic induction. This, in brief, is the genesis of magnetic electricity, which is the basis of all that has been accomplished in electrical science. The first advance after these discoveries was in the development of the electric telegraph--the discovery in 1837, by the philosopher Steinhill, that the earth could serve as a conductor, thus requiring but one wire in the employment of an electric current. Simultaneously came Morse's invention of the mechanism for the telegraph in 1844, foreshadowed by Henry in the ringing of bells, thus transmitting intelligence by sound. Four years later, in 1848, Prof. M. G. Farmer, still living in Eliot, Me., attached an electro-magnet to clockwork for the striking of bells to give an alarm of fire. The same idea came to William F. Channing. The mechanism, constructed simply to illustrate the idea by Professor Farmer, was placed upon the roof of the Court House in Boston, and connected with the telegraph wire leading to New York, and an alarm rung by the operator in that city. The application of electricity for giving definite information to firemen was first made in Boston, and it was my privilege to give the first alarm on the afternoon of April 12, 1852. At the close of the last century, Benjamin Thompson, born in Woburn, Mass., known to the world as Count Rumford, was in the workshop of the military arsenal of the King of Bavaria in Munich, superintending the boring of a cannon. The machinery was worked by two horses. He was surprised at the amount of heat which was generated, for when he threw the borings into a tumbler filled with cold water, it was set to boiling, greatly to the astonishment of the workmen. Whence came the heat? What was heat? The old philosopher said that it was an element. By experiment he discovered that a horse working two hours and twenty minutes with the boring machinery would heat nineteen pounds of water to the boiling point. He traced the heat to the horse, but with all his acumen he did not go on with the induction to the hay and oats, to the earth, the sunshine and rain, and so get back to the sun. On
PREV.   NEXT  
|<   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96  
97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>  



Top keywords:

telegraph

 

electricity

 
electric
 

ringing

 

magnetic

 

Farmer

 

current

 

boiling

 

Professor

 
discovered

induction

 
machinery
 
boring
 
Boston
 
mechanism
 

constructed

 

philosopher

 

workshop

 

superintending

 

arsenal


Munich

 

cannon

 

Bavaria

 

military

 

century

 

privilege

 

afternoon

 

firemen

 
information
 

application


giving

 

definite

 

Woburn

 

Thompson

 
Benjamin
 
Rumford
 

traced

 
acumen
 
pounds
 

nineteen


twenty
 
minutes
 

sunshine

 

working

 

experiment

 

borings

 

tumbler

 

filled

 

horses

 

surprised